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Abstract

Variable selection, the process of identifying input vialés that are relevant to a particular learning
problem, has received much attention in the learning conitmuvethods that employ a learning
algorithm as a part of the selection process (wrappers) baga shown to outperform methods
that select variables independently from the learningrélyo (filters), but only at great compu-
tational expense. We present a randomized wrapper algovithose computational requirements
are within a constant factor of simply learning in the preseaf all input variables, provided that
the number of relevant variables is small and known in adea¥ée then show how to remove the
latter assumption, and demonstrate performance on sgretdems.

1. Introduction

When learning in a supervised environment, a learning algorithm is typicadlepted with a set
of N-dimensional data points, each with its associated target output. The leatgorghm then
outputs a hypothesis describing the function underlying the data. In prattie set olN input
variables is carefully selected by hand in order to improve the perforndiice learning algorithm
in terms of both learning speed and hypothesis accuracy.

In some cases there may be a large number of inputs available to the learmirithalgfew of
which are relevant to the target function, with no opportunity for humanvatgion. For example,
feature detectors may generate a large number of features in a pattegnitien task. A second
possibility is that the learning algorithm itself may generate a large number otaeeepts (or
functions) in terms of existing concepts. Valiant (1984), Fahiman and teefi©90), and Kivinen
and Warmuth (1997) all discuss situations in which a potentially large numiiestoires are created
during the learning process. In these situations, an automatic approaehidble selection is
required.

One approach to variable selection that has produced good results issiy@aeiwvmethod (John
et al., 1994). Here, a search is performed in the space of variabletsulsth the performance
of a specific learning algorithm based on such a subset serving asakamten function. Using
the actual generalization performance of the learning algorithm as aragwealunetric allows this
approach to search for the most predictive set of input variables veiffeot to the learner. However,
executing the learning algorithm for each selection of variables duringetivefs ultimately renders
the approach intractable in the presence of many irrelevant variables.
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In spite of the cost, variable selection can play an important role in learmimevant variables
can often degrade the performance of a learning algorithm, particulady @ata are limited. The
main computational cost associated with the wrapper method is usually thagiftig the learn-
ing algorithm. The learner must produce a hypothesis for each subtfet wiput variables. Even
greedy selection methods (Caruana and Freitag, 1994) that ignoreala@e of the search space
can produce a large number of candidate variable sets in the presaneayfrrelevant variables.

Randomized variable elimination avoids the cost of evaluating many variabldséaking
large steps through the space of possible input sets. The number dfleardiminated in a single
step depends on the number of currently selected variables. We passasttfunction whose pur-
pose is to strike a balance between the probability of failing to select sfigitgssset of irrelevant
variables and the cost of running the learning algorithm many times. We usenaof backward
elimination approach to simplify the detection of relevant variables. Remoatyfelevant vari-
able should immediately cause the learner's performance to degradewd&dcklimination also
simplifies the selection process when irrelevant variables are much more eotharo relevant
variables, as we assume here.

Analysis of our cost function shows that the cost of removing all irrelevariables is dom-
inated by the cost of simply learning with all variables. The total cost is therefore within a
constant factor of the cost of simply learning the target function baseall dth input variables,
provided that the cost of learning grows at least polynomiall¥inThe bound on the complexity
of our algorithm is based on the complexity of the learning algorithm being Ui given learn-
ing algorithm executes in tim®(N?), then removing thél — r irrelevant variables via randomized
variable elimination also executes in tif@N?). This is a substantial improvement compared to
the factorN or more increase experienced in removing inputs one at a time.

2. Variable Selection

The specific problem of variable selection is the following: Given a largefseput variables and a
target concept or function, produce a subset of the original inpighlas that predict best the target
concept or function when combined into a hypothesis by a learning algorittma.term “predict
best” may be defined in a variety of ways, depending on the specific ajipticand selection
algorithm. Ideally the produced subset should be as small as possibleuteredining costs and
help prevent overfitting.

From a theoretical viewpoint, variable selection should not be nece$sargxample, the pre-
dictive power of Bayes rule increases monotonically with the number ofblasaMore variables
should always result in more discriminating power, and removing variabtagdd only hurt. How-
ever, optimal applications of Bayes rule are intractable for all but the srhalleblems. Many
machine learning algorithms perform sub-optimal operations and do nfdrooio the strict con-
ditions of Bayes rule, resulting in the potential for a performance declineeifatte of unnecessary
inputs. More importantly, learning algorithms usually have access to a limited muwhlegam-
ples. Unrelated inputs require additional capacity in the learner, but dorimg new information
in exchange. Variable selection is thus a necessary aspect of indieetinég.

A variety of approaches to variable selection have been devised. Mdsbdsecan be placed
into one of two categoriedilter methods omwrappermethods. Filter approaches perform variable
selection independently of the learning algorithm, while wrappers make tedependent selec-
tions. A third group of special purpose methods perform feature sateictithe context of neural
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networks, known as parameter pruning. These methods cannot direditym variable selection
for arbitrary learning algorithms; they are approaches to removing ieetaaputs from learning
elements.

Many variable selection algorithms (although not all) perform some forneafch in the space
of variable subsets as part of their operation. A forward selectionigdigobegins with the empty
set and searches for variables to add. A backward elimination algoritgmsbeith the set of all
variables and searches for variables to remove. Optionally, forwaadidlgns may occasionally
choose to remove variables, and backward algorithms may choose tor@tiasa This allows the
search to recover from previous poor selections. The advantagevedrid selection is that, in the
presence of many irrelevant variables, the size of the subsets will reataiively small, helping to
speed evaluation. The advantage of backward elimination is that recagirialevant variables is
easier. Removing a relevant variable from an otherwise complete sdtdstause a decline in the
evaluation, while adding a relevant variable to an incomplete set may have little iatmadpact.

2.1 Filters

Filter methods use statistical measures to evaluate the quality of the variabétssubbie goal
is to find a set of variables that is best with respect to the specific qualityumeeaBetermining
which variables to include may either be done via an explicit search in the spaariable subsets,
or by numerically weighting the variables individually and then selecting thade the largest
weight. Filter methods often have the advantage of speed. The statisticalreseased to evaluate
variables typically require very little computation compared to cost of runniegraing algorithm
many times. The disadvantage is that variables are evaluated independenhitythe context of
the learning problem.

Early filtering algorithms include FOCUS (Almuallim and Dietterich, 1991) and Ré¢Kafa
and Rendell, 1992). FOCUS searches for a smallest set of variablesthaompletely discriminate
between target classes, while Relief ranks variables according to aadistaetric. Relief selects
training instances at random when computing distance values. Note that tioisridated to our
approach of selecting variables at random.

Decision trees have also been employed to select input variables bydisstrig a tree, and then
selecting only those variables tested by decision nodes (Cardie, 1998t &ual., 1993). In another
vein, Koller and Sahami (1996) discuss a variable selection algorithnu lmesseross entropy and
information theory.

Methods from statistics also provide a basis for a variety of variable filtatogmyithms. Correlation-
based feature selection (CFS) (Hall, 1999) attempts to find a set of varidiateare each highly
correlated with the target function, but not with each other. The ChiMggeber, 1992) and Chi2
algorithms (Liu and Setiono, 1997) remove both irrelevant and redundaiables using 2 test
to merge adjacent intervals of ordinal variables.

Other methods from statistics solve problems closely related to variable seldatioexample,
principal component analysis (see Dunteman, 1989) is a method fordramisf the observed
variables into a smaller number of dimensions, as opposed to removing imemveedundant
variables. Projection pursuit (Friedman and Tukey, 1974) and faciysis (Thurstone, 1931)
(see Cooley and Lohnes, 1971, for a detailed presentation) are atetblyeduce dimensionality
and to detect structure in relationships among variables.
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Discussion of filtering methods for variable selection also arises in the patigognition liter-
ature. For example, Devijver and Kittler (1982) discuss the use of a variéityear and non-linear
distance measures and separability measures such as entropy. Théig@lss several search al-
gorithms, such as branch and bound and ptliake awayr. Branch and bound is an optimal search
technique that relies on a careful ordering of the search space toaveixhaustive search. Pliis
take away is more akin to the standard forward and backward search. At each stp variables
are selected for inclusion in the current set amxisting variables are removed.

2.2 Wrappers

Wrapper methods attempt to tailor the selection of variables to the strengthseahktegses of

specific learning algorithms by using the performance of the learner toatgalubset quality. Each
candidate variable set is evaluated by executing the learning algorithm thieeselected variables
and then testing the accuracy of the resulting hypotheses. This aprastie advantage of using
the actual hypothesis accuracy as a measure of subset quality. Tilenpris that the cost of

repeatedly executing the learning algorithm can quickly become prohibNeeertheless, wrapper
methods do tend to outperform filter methods. This is not surprising givémitlagpers evaluate

variables in the context of the learning problem, rather than independently.

2.2.1 ALGORITHMS

John, Kohavi, and Pfleger (1994) appear to have coined the ternpperawhile researching the
method in conjunction with a greedy search algorithm, although the technigleelbager history
(Devijver and Kittler, 1982). Caruana and Freitag (1994) also expetadenith greedy search
methods for variable selection. They found that allowing the search to aitkerariables or remove
them at each step of the search improved over simple forward and backearches. Aha and
Bankert (1994) use a backward elimination beam search in conjunctiortiveitiB1 learner, but
found no evidence to prefer this approach to forward selection. OEMN/(Langley and Sage,
1994) selects variables for the nearest neighbor learning algorithmalgbethm uses a backward
elimination approach with a greedy search, terminating when the nearelsbaearcuracy begins
to decline.

Subsequent work by Kohavi and John (1997) used forward acid\zad best-first search in the
space of variable subsets. Search operators generally include addemoving a single variable
from the current set. This approach is capable of producing a minimalff $gput variables, but
the cost grows exponentially in the face of many irrelevant variables. Gontpoperators generate
nodes deep in the search tree early in the search by combining the bestrcloich given node.
However, the cost of running the best-first search ultimately remainghgtieé in the presence of
many irrelevant variables.

Hoeffding races (Maron and Moore, 1994) take a different apgroall possible models (se-
lections) are evaluated via leave-one-out cross validation. For edtle bif evaluations, an error
confidence interval is established for each model. Models whose ewer lound falls below the
upper bound of the best model are discarded. The result is a set elsnaldose error is insignifi-
cantly different.

Several algorithms for constructing regression models are also formsapper methods. For
example, Least angle regression (Efron et al., 2003), which geresaim improves upon several
forward selection regression algorithms, adds variables to the modatiantally.
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Genetic algorithms have been also been applied as a search mechanismiafole\selection.
Vafaie and De Jong (1995) describe using a genetic algorithm to peviariaible selection. They
used a straightforward representation in which individual chromosorees bit-strings with each
bit marking the presence or absence of a specific variable. Indivigeals evaluated by training
and then testing the learning algorithm. In a similar vein, SET-Gen (CherlamaeBhavlik, 1996)
used a fitness (evaluation) function that included both the accuracy afdbeed model and the
comprehensibility of the model. The learning model used in their experimenta desision tree
and comprehensibility was defined as a combination of tree size and nunfeatwks used. The
FSS-EBNA algorithm (Inza et al., 2000) used Bayesian Networks to mateduoéls in a GA-based
approach to variable selection.

The relevance-in-context (RC) algorithm (Domingos, 1997) is basdbeitea that some fea-
tures may only be relevant in particular areas of the instance spacettréedased (lazy) learners.
Clusters of training examples are formed by finding examples of the samenifasearly equiva-
lent feature vectors. The features along which the examples diffeeareved and the accuracy of
the entire model is determined. If the accuracy declined, the featuresstoeed and the failed ex-
amples are removed from consideration. The algorithm continues untildher® more examples
to consider. Results showed that RC outperformed other wrapper metltbhdgspect to a 1-NN
learner.

2.2.2 LEARNER SELECTIONS

Many learning algorithms already contain some (possibly indirect) formridibie selection, such
as pruning in decision trees. This raises the question of whether theleas@bctions made by the
learner should be used by the wrapper. Such an approach would aertznly run faster than
methods that rely only on the wrapper to make variable selections. The evraglects variables
for the learner, and then executes the learner. If the resulting hyoites improvement, then the
wrapper further removes all variables not used in the hypothesisebedotinuing on with the next
round of selections.

This approach assumes the learner is capable of making beneficialleadddctions. If this
were true, then both filter and wrapper methods would be largely irrele\wdgn the most so-
phisticated learning algorithms may perform poorly in the presence of hightglated, redundant
or irrelevant variables. For example, John, Kohavi, and Pfleger4(188d Kohavi (1995) both
demonstrate how C4.5 (Quinlan, 1993) can be tricked into making bad dexiditire root Vari-
ables highly correlated with the target value, yet ultimately useless in terms dngniaé&neficial
data partitions, are selected near the root, leading to unnecessarily egeNtoreover, these bad
decisions cannot be corrected by pruning. Only variable selectionrpetl outside the context of
the learning algorithm can recognize these types of correlated, irr¢élesaables.

2.2.3 EBSTIMATING PERFORMANCE

One question that any wrapper method must consider is how to obtain a giioate of the ac-
curacy of the learner’s hypothesis. Both the amount and quality of daitalle to the learner
affect the testing accuracy. Kohavi and John (1997) suggest asiftgple runs of five-fold cross-
validation to obtain an error estimate. They determine the number of crossti@iiduns by con-
tinuing until the standard deviation of the accuracy estimate is less than 1%.h@hithe nice
property of (usually) requiring fewer runs for large data sets. Hewen general, cross-validation
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is an expensive procedure, requiring the learner to produce sbypheses for each selection of
variables.

2.3 Model Specific Methods

Many learning algorithms have built-in variable (or parameter) selectionitigms which are used
to improve generalization. As noted above, decision tree pruning is ongpéxaf built-in variable
selection. Connectionist algorithms provide several other examplesnkasywarameter pruning.
As in the more general variable selection problem, extra weights (parajnigtersnetwork can
degrade the performance of the network on unseen test instanceascerabe the cost of evaluat-
ing the learned model. Parameter pruning algorithms often suffer the sandeatitzges as tree
pruning. Poor choices made early in the learning process can not usaallydone.

One method for dealing with unnecessary network parameters is weigiyt (i&erbos, 1988).
Weights are constantly pushed toward zero by a small multiplicitive factor in ttiatepule. Only
the parameters relevant to the problem receive sufficiently large wepglasttes to remain signifi-
cant. Methods for parameter pruning include the optimal brain damage (QBDun et al., 1990)
and optimal brain surgeon (OBS) (Hassibi and Stork, 1993) algorithrogh ®ly on the second
derivative to determine the importance of connection weights. Sensitiviigebpruning (Moody
and Utans, 1995) evaluates the effect of removingtvorkinput by replacing the input by its mean
over all training points. The autoprune algorithm (Finnoff et al., 1998hds an importance metric
for weights based on the assumption that irrelevant weights will become ights with a low
metric value are considered unimportant and are removed from the network

There are also connectionist approaches that specialize in learniddyguithe presence ir-
relevant inputs, without actually removing them. The WINNOW algorithm (Littleetd 988) for
Boolean functions and the exponentiated gradient algorithm (Kivineméarchuth, 1997) for real-
valued functions are capable of learning linearly separable functidiegerfly in the presence of
many irrelevant variables. Exponentiated gradient algorithms, of whi®tiN&IW is a special case,
are similar to gradient descent algorithms, except that the updates are matitiplimther than ad-
ditive.

The resultis a mistake bound that is linear in the number of relevant inpatsnlyuogarithmic
in the number of irrelevant inputs. Kivinen and Warmuth also observeditaatumber of examples
required to learn an accurate hypothesis also appears to obey thesks blowother words, the num-
ber of training examples required by exponentiated gradient algorithmsgnaly logarithmicly in
the number of irrelevant inputs.

Exponentiated gradient algorithms may be applied to the problem of sepattatiisgt of rel-
evant variables from irrelevant variables by running them on the alaitidia and examining the
resulting weights. Although exponentiated gradient algorithms produce a nmimamer fit of the
data in non-separable problems, there is no guarantee that such a fitlyvdhrthe variables rele-
vant to a non-linear fit.

Many algorithms that are directly applicable in non-linear situations experiamperformance
decline in the presence of irrelevant input variables. Even suppoidivmachines, which are often
touted as impervious to irrelevant variables, have been shown to imprdeemance with feature
selection (Weston et al., 2000). A more general approach to recognétevaint variables is needed.
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3. Setting

Our algorithm for randomized variable elimination (RVE) requires a seg@uance) oN-dimensional
vectorsx; with labelsy;. The learning algorithn’ is asked to produce a hypotheki®ased only
on the inputsg; that have not been marked as irrelevant (alternatively, a prepmoasmsd remove
variables marked irrelevant). We assume that the hypotheses bear datiom e the data and
input values. A degenerate learner (such as one that producesntkehgaothesis regardless of
data or input variables) will in practice cause the selection algorithm ultimatebléctszero vari-
ables. This is true of most wrapper methods. For the purposes of this am&lese generalization
accuracy as the performance criteria, but this is not a requirement afgbethm.

We make the assumption that the numbef relevant variables is at least two to avoid degen-
erate cases in our analysis. The number of relevant variables shosidabecompared to the total
number of variablebl. This condition is not critical to the functionality of the RVE algorithm; how-
ever the benefit of using RVE increases as the rathd tf r increases. Importantly, we assume that
the number of relevant variables is known in advance, although whicibles are relevant remains
hidden. Knowledge of is a very strong assumption in practice, as such information is not typically
available. We remove this assumption in Section 6, and present an algoritlestifoating while
removing variables.

4. The Cost Function

Randomized variable elimination is a wrapper method motivated by the idea that, pnegence
of many irrelevant variables, the probability of successfully selectingragurelevant variables
simultaneously at random from the set of all variables is high. The algoGthmputes the cost
of attempting to remové input variables out ofi remaining variables given thatare relevant.
A sequence of values fdeis then found by minimizing the aggregate cost of removing\NaH r
irrelevant variables. Note thatrepresents the number of remaining variables, wiildenotes the
total number of variables in the original problem.

The first step in applying the RVE algorithm is to define the cost metric for trendearning
algorithm. The cost function can be based on a variety of metrics, deeadiwhich learning
algorithm is used and the constraints of the application. Ideally, a metric walitchie the amount
of computational effort required for the learning algorithm to producgpthesis.

For example, an appropriate metric for the perceptron algorithm (Roserl91a8) might relate
to the number of weight updates that must be performed, while the numbailisfte the data
purity criterion (e.g. information gain (Quinlan, 1986)) may be a good metricézision tree
induction algorithms. Sample complexity represents a metric that can be applieddst any
algorithm, allowing the cost function to compute the number of instances thestearst see in
order to remove the irrelevant variables from the problem. We do notresauspecific metric for
the definition and analysis of the cost function.

4.1 Definition

The first step of defining the cost function is to consider the probability

p+(n7r’k):':_|_i<n;ii—i>
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of successfully selectingirrelevant variables at random and without replacement, given tha ther
aren remaining and relevant variables. Next we use this probability to compute the expected
number of consecutive failures before a success at seldciirglevant variables from remaining
given thatr are relevant. The expression

1- p+(n7 r7 k)

Ei(n’ r’ k) - p+(n7 r’ k)

yields the expected number of consecutive trials in which at least one ofdéevant variables will
be randomly selected along with irrelevant variables prior to success.

We now discuss the cost of selecting and remowngriables, givem andr. Let M(L,n)
represent an upper bound on the cost of running algorithbased om inputs. In the case of a
perceptronM (L, n) could represent an estimated upper bound on the number of updatesrsetf
by ann-input perceptron. In some instances, such as a backpropagatia metwork (Rumelhart
and McClelland, 1986), providing such a bound may be troublesome. rlerge the order of
the worst case computational cost of the learner with respect to the nwohb®uts is all that
is needed. The bounding function should account for any assumptiomg the nature of the
learning problem. For example, if learning Boolean functions requiresciasgputational effort
than learning real-valued functions, thiet{ L, n) should include this difference. The general cost
function described below therefore need not make any additional aisaspbout the data.

In order to simplify the notation somewhat, the following discussion assumesddigorithm
for L. The expected cost of successfully removingariables fromn remaining given that are
relevant is given by

I(n,rrk) = E~(nrk)-M(L,n—k)+M(L,n—Kk)
= M(L,n—Kk)(E~(n,r,k)+1)

for 1 <k < n-r. The first term in the equation denotes the expected cost of failures (isei.cu
cessful selections dfvariables) while the second denotes the cost of the one success.

Given this expected cost of removilkgvariables, we can now define recursively the expected
cost of removing alh —r irrelevant variables. The goal is to minimize locally the expected cost
of removingk inputs with respect to the expected remaining cost, resulting in a global minimum
expected cost for removing all—r irrelevant variables. The use of a greedy minimization step
relies upon the assumption thislt( £, n) is monotonic inn. This is reasonable in the context of
metrics such as number of updates, number of data purity tests, and samplexity. The cost
(with respect to learning algorithm) of removingn—r irrelevant variables is represented by

lsum(N,T) = mkin(l (n,r,K) + lsum(n—K,1)).

The first part of the minimization term represents the cost of removing thé& fiesiables while the
second part represents the cost of removing the remaming— k irrelevant variables. Note that
we definelgym(r,r) = 0.

The optimal value,pi(n,r) for k givenn andr can be determined in a manner similar to com-
puting the cost of removing ati —r irrelevant inputs. The value &fis computed as

Kopt(n,r) =arg rrllir(I (n,1r,K) + lsum(n—K,r)).
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4.2 Analysis

The primary benefit of this approach to variable elimination is that the combirsgdinderms of
the metricM (L, n)) of learning the target function and removing the irrelevant input varsaisle
within a constant factor of the cost of simply learning the target functioadas allN inputs. This
result assumes that the functibh( £, n) is at least a polynomial of degrge> 0. In cases where
M(L,n) is sub-polynomial, running the RVE algorithm increases the cost of remtivénigrelevant
inputs by a factor of logn) over the cost of learning alone as shown below.

4.2.1 REMOVING MULTIPLE VARIABLES

We now show that the above average-case bounds on the perforofaheeRVE algorithm hold.
The worst-case is the unlikely condition in which the algorithm always selestezant variable.
We assume integer division here for simplicity. Firstdet 1, which allows us to remove the min-
imization term from the equation fdg,n(n,r) and reduces the number of variables. This value of
k is not necessarily the value selected by the above equations. Howeveqgdhfunction is com-
puted via dynamic programming, and the functd(L, n) is assumed monotonic. Any differences
between our chosen valueloand the actual value computed by the equations can only serve to de-
crease further the cost of the algorithm. Note also that, bedatispends on the number of current
variables, k changes at each iteration of the algorithm.

The probability of succesp™ (n,r, ) is minimized whenn = r + 1, since there is only one
possible successful selection angossible unsuccessful selections. This in turn maximizes the
expected number of failurds™(n,r, 1) = r. The formula for (n,r,k) is now rewritten as

I(mr,?) < (r+1)~M(L,n—?),

where bothM (L, n— k) terms have been combined.
The expected cost of removing all-r irrelevant inputs may now be rewritten as a summation

lsum(N, 1) < r%:) ((H—J-)M (L,n <%>i+l>) .

The second argument to the learning algorithm’s cost mitiiienotes the number of variables used
at step of the RVE algorithm. Notice that this number decreases geometrically taveedall that
n=r is the terminating condition for the algorithm). The logarithmic factor of the uppand on

the summation% <rlg(n), follows directly from the geometric decrease in the number
of variables used at each step of the algorithm. The linear fadwliows from the relationship
betweerk andr. In general, ag increasesk decreases. Notice that aspproached, RVE and
our cost function degrade into testing and removing variables individually.

Concluding the analysis, we observe that for functibi{<, n) that are at least polynomial im
with degreej > 0, the cost incurred by the first pass of RMEH0) will dominate the remainder of
the terms. The average-case cost of running RVE in these cases fetbdaunded bysyN,r) <
O(rM(L,N)). An equivalent view is that the sum of a geometrically decreasing senee@es to
a constant. Thus, under the stated assumptiorr tisasmall compared to (and independent §f)
RVE requires only a constant factor more computation than the learner. alone

WhenM( L, n) is sub-linear im (e.g logarithmic), each pass of the algorithm contributes signif-
icantly to the total expected cost, resulting in an average-case bo@(@adbg(N)M(L,N)). Note
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that we use average-case analysis here because in the worst calg@titiem can randomly select
relevant variables indefinitely. In practice however, long streaks @&kéections are rare.

4.2.2 REMOVING VARIABLES INDIVIDUALLY

Consider now the cost of removing ti— r irrelevant variables one at a tim& £ 1). Once
again the probability of success is minimized and the expected number of $aBureaximized at
n=r+ 1. The total cost of such an approach is given by

n—r
lsum(N, 1) = Z(r+1)-M(L,n—i).

=
Unlike the multiple variable removal case, the number of variables available tedireer at each
step decreases only arithmetically, resulting in a linear number of stapsTihis is an important
deviation from the multiple selection case, which requires only a logarithmic nuofilséeps. The
difference between the two methods becomes substantial Wheiarge. Concluding, the bound
on the average-case cost of RVHdgn(N,r) < O(NrM(L,N)) whenk = 1. This is true regardless
of whether the variables are selected randomly or deterministically at eqch ste

In principle, a comparison should be made between the upper bound dftréran that re-

moves multiple variables per step and the lower bound of the algorithm that esraingle vari-
able per step in order to show the differences clearly. However, géngia sufficiently tight lower
bound requires making very strong assumptions on the fori(af, n). Instead, note that the two
upper bounds are comparable with respedita’, n) and differ only by the leading factox.

4.3 Computing the Cost andk-Sequence

The equations folsym(n,r) andkyp(n,r) suggest a simpl®(N?) dynamic programming solution
for computing both the cost and optinlatequence for a problem bfvariables. Table 1 shows an
algorithm for computing a table of cost akdralues for eaclh with r +1 <i < N. The algorithm
fills in the tables of values by starting with smajland bootstrapping to find values for increasingly
largen. The functionl (n,r,k) in Table 1 is computed as described above.

The O(N?) cost of computing the sequencekofalues is of some concern. Whaiis large and
the learning algorithm requires time only lineamMinthe cost of computing the optimiisequence
could exceed the cost of removing the irrelevant variables. In prackceot of computing values
for k is negligible for problems up tbl = 1000. For larger problems, one solution is simply to set
k= 0 asin Section 4.2.1. The analysis shows that this produces good perteriaas requires no
computational overhead.

5. The Randomized Variable Elimination Algorithm

Randomized variable elimination conducts a backward search throughette afpvariable subsets,
eliminating one or more variables per step. Randomization allows for selectiomrlef/ant vari-
ables with high probability, while selecting multiple variables allows the algorithm teerttoough
the space without incurring the cost of evaluating the intervening points sptee. RVE conducts
its search along a very narrow trajectory. The space of variable tslibssampled sparsely, rather
than broadly and uniformly. This structured yet random search allovis teYeduce substantially
the total cost of selecting relevant variables.
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Given: £L,N,r

lsun{r +1..N] < 0

fori«<r+1toNdo
bestCost—
for k< 1toi—rdo
temp— I (i,r,K) + lsun{i — K]
if temp< bestCosthen

bestCost— temp
bestK— k

lsumi] < bestCost

Kopt[i] < bestK

Table 1: Algorithm for computings and cost values.

A backward approach serves two purposes for this algorithm. Firdiwaad elimination eases
the problem of recognizing irrelevant or redundant variables. As @ core set of relevant
variables remains intact, removing other variables should not harm thermperice of a learning
algorithm. Indeed, the learner’s performance ritayeaseas irrelevant features are removed from
consideration. In contrast, variables whose relevance dependsmesemce of other variables may
have no noticeable effect when selected in a forward manner. Thuskesisthould be recognized
immediately via backward elimination, while good selections may go unrecognjzaddrward
selection algorithm.

The second purpose of backward elimination is to ease the process dfreghariables. If
most variables in a problem are irrelevant, then a random selection oblearia naturally likely to
uncover them. Conversely, a random selection is unlikely to turn up rdleseables in a forward
search. Thus, the forward search must work harder to find eaclantleariable than backward
search does for irrelevant variables.

5.1 Algorithm

The algorithm begins by computing the valuekgf(i,r) forallr +1 <i < n. Next it generates an
initial hypothesis based on allinput variables. Then, at each step, the algorithm selggt&, r)
input variables at random for removal. The learning algorithm is trainethememainingn — k
inputs, and a hypothediss produced. If the errcg(h') of hypothesidY is less than the erra(h) of
the previous hypothesis(possibly within a given tolerance), then the seledtétputs are marked
as irrelevant and are all simultaneously removed from future consider#tahavi and John (1997)
provide an in depth discussion on evaluating and comparing hypothesss da limited data sets.
If the learner was unsuccessful, meaning the new hypothesis had adaige then at least one of
the selected variables was relevant. A new set of inputs is selected anctesgprepeats. The
algorithm terminates when all—r irrelevant inputs have been removed. Table 2 shows the RVE
algorithm.
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Given: L, n, r, tolerance

compute tables folisyn(i,r) andkopt(i,r)
h < hypothesis produced % onn inputs

while n>r do
K« Kopt(n,r)
selectk variables at random and remove them
h < hypothesis produced hg onn— k inputs
if e(h) —e(h) < tolerancethen
n—n-k
h«H
else
replace the selectddvariables

Table 2: Randomized backward-elimination variable selection algorithm.

The structured search performed by RVE is easily distinguished from @hdomized search
methods. For example, genetic algorithms maintain a population of states in thle space and
randomly mate the states to produce offspring with properties of both paré€hts effect is an
initially broad search that targets more specific areas as the searckegsegyr A wide variety of
subsets are explored, but the cost of so much exploration can easilgcettee cost of a traditional
greedy search. See Goldberg (1989) or Mitchell (1996) for detaiszligisions on how genetic
algorithms conduct search.

While GAs tend to drift through the search space based on the propeftiediaduals in
the population, the LVF algorithm (Liu and Setino, 1996) samples the spacariable subsets
uniformly. LVF selects both the size of each subset and the member vargbésiom. Although
such an approach is not susceptible to “bad decisions” or local minimarabalglity of finding
a best or even good variable subset decreases exponentially agribermaf irrelevant variables
increases. Unlike RVE, LVF is a filtering method, which relies on the incomgigteate (number
of equivalent instances divided by number of total instances) in the ddtaiegpect to the selected
variables.

5.2 A Simple Example

The preceding presentation of the RVE algorithm has remained strictlyajeradying on no spe-
cific learning algorithm or cost metric. We consider now a specific examgiewfthe randomized
variable elimination algorithm may be applied to a linear threshold unit. The speskexamined
here is to learn a Boolean function that is true when seven out of ten ntlevdables are true, given
a total of 100 input variables. In order to ensure that the hypothesesajed for each selection of
variables has nearly minimal error, we use the thermal perceptron traigimgtiam (Frean, 1992).
The thermal perceptron uses simulated annealing to settle weights regaifdiieda separability.
The pocket algorithm (Gallant, 1990) is also applicable, but we found ttie &bower and prone to
more testing errors.
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Figure 1: Plot of the expected cost of running RY& N, r = 10)) along with the cost of removing
inputs individually, and the estimated number of upd&é<£,N).

Twenty problems were generated randomly with= 100 input variables, of which 90 are ir-
relevant and = 10 are relevant. Each of the twenty problems used a different set oélemrant
variables (selected at random) and different data sets. Two datasdtsyith 1000 instances, were
generated independently for each problem. One data set was usealrforgtwhile the other was
used to validate the error of the hypotheses generated during eachabselections. The values
of the 100 input variables were all generated independently. The mealpemwf unique instances
with respect to the ten relevant variables was 466 .

The first step in applying the RVE algorithm is to define the cost metric and tiotidmM (L, n)
for learning om inputs. For the perceptron, we choose the number of weight updates mettic.
The thermal perceptron anneals a temperatutigat governs the magnitude of the weight updates.
Here we usedp = 2 and decayed the temperature at a rate of 0.999 per training epoch «niil3
(we observed no change in the hypotheses produced by the algorttim<{®.3). Given the tem-
perature and decay rate, exactly 1897 training epochs are perfoemledime a thermal perceptron
is trained. With 1000 instances in the training data, the cost of running tharigaalgorithm is
fixed atM(L,n) = 189700@n+ 1). Given the above cost formula for arinput perceptron, a table
of values forlsym(Nn,r) andkopt(N,r) can be constructed.

Figure 1 plots a comparison of the computed cost of the RVE algorithm, thetoshoving
variables individually, and the estimated number of updistés, N) of anN-input perceptron. The
calculated cost of the RVE algorithm maintains a linear growth rate with resp@&t while the
cost of removing variables individually grows &¥. This agrees with our analysis of the RVE
and individual removal approaches. Relationships similar to that showigume~1 arise for other
values ofr, although the constant factor that separéggn,r) andM(L,n) increases with.
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After creating the tabléop(n,r), the selection and removal process begins. Since the seven-
of-ten learning problem is linearly separable, the tolerance for comptringew and current hy-
potheses was set to near zero. A small tolerance of 0.06 (equivaldmub 5 misclassifications)
is necessary since the thermal perceptron does not guarantee a minirauhypothesis.

We also allow the current hypothesis to bias the next by not randomizingeigis (of remain-
ing variables) after each pass of RVE. Small value weights, suggestieatiabirrelevant variables,
can easily transfer from one hypothesis to the next, although this is n@trgead. Seeding the per-
ceptron weights may increase the chance of finding a linear sepé#rai@r exists If no separator
exists, then seeding the weights should have minimal impact. In practice we tfoairthe effect of
seeding the weights was nullified by the pocket perceptron’s use oékmge

5.3 Example Results

The RVE algorithm was run using the twenty problems described aboveothiyges based on ten
variables were produced using an average.45% 10° weight updates, 81.1 calls to the learning
algorithm, and 359.9 seconds on a 3.12 GHz Intel Xenon processorsir®f the RVE algorithm
that removes variables individually (i.& was set permanently to 1) was also run, and produced
hypotheses using 12x 10° weight updates, 138.7 calls to the learner, and 644.7 seconds. These
weight update values agree with the estimate produced by the cost funBotmyversions of the
algorithm generated hypotheses that included irrelevant and excleldedmt variables for three of
the test problems. All cases in which the final selection of variables was@utovere preceded by
an initial hypothesis (based on all 100 variables) with unusually high egrasr(greater than 0.18

or approximately 45 misclassified instances). Thus, poor selections ddouneins in which the
first hypothesis produced has high error due to annealing in the poetatptron.

Figure 2 plots the average number of inputs used for each variable e¢hainber of inputs)
compared to the total number of weight updates. Each marked point on th#eplates a size of
the set of input variables given to the perceptron. The error barsaitedtbe standard deviation
in number of updates required to reach that point. Every third point is pléatetthe individual
removal algorithm. Compare both the rate of drop in inputs and the numbepoftgses trained
for the two RVE versions. This reflects the balance between the costimhiyaand unsuccessful
variable selections. Removing variables individually in the presence of mabgvant variables
ignores the cost of training each hypothesis, resulting in a total costiskeatquickly early in the
search process.

6. Choosingk When r Is Unknown

The assumption that the number of relevant variablessknown has played a critical role in the

preceding discussion. In practice, this is a strong assumption that issilgtreat. We would like

an algorithm that removes irrelevant attributes efficiently without such ledye. One approach

would be simply to guess values foland see how RVE fares. This is unsatisfying however, as a

poor guess can destroy the efficiency of RVE. In general, guesgetfie values for is difficult,

but placing a loose bound arounanay be much easier. In some cases, the maximum value for

may be known to be much less thidnwhile in other cases,can always be bounded by 1 aNd
Given some bound on the maximumyax and minimumr i, values forr, a binary search for

r can be conducted during RVE'’s search for relevant variables. €hésron the idea that RVE

attempts to balance the cost of learning against the cost of selecting telaviables for removal.
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Figure 2: A comparison between the number of inputs on which the perosgre trained and the
mean aggregate number of updates performed by the perceptrons.

At each step of RVE, a certain number of failurés; (n,r,k), are expected. Thus, if selecting
variables for removal is too easy (i.e. we are selecting too few variableacht step), then the
estimate forr is too high. Similarly, if selection fails an inordinate number of times, then the
estimate for is too low.

The choice of when to adjustis important. The selection process must be allowed to fail a
certain number of times for each success, but allowing too many failuresegiiédse the efficiency
of the algorithm. We bound the number of failures &¥ ~ (n,r,k) wherec; > 1 is a constant.
This allows for the failures prescribed by the cost function along with sommuat of “bad luck”
in the random variable selections. The number of consecutive susdedseunded similarly by
c2(r —E~(n,r,k)) wherec, > 0 is a constant. SincE~(n,r,k)) is at mostr, the value of this
expression decreases as the expected number of failures increggescticec; = 3 andc, = 0.3
appear to work well.

6.1 A General Purpose Algorithm

Randomized variable elimination including a binary searchr f(RVErS — “reverse”) begins by
computing tables fokyp(n,r) for values ofr betweerrymin andrmax. Next an initial hypothesis is
generated and the variable selection loop begins. The algorithm choesesrttber of variables
to remove at each step based on the current value dach time the bound on the maximum
number of successful selections is exceedggdy reduces ta and a new value is calculated as
r= rmaﬁ% Similarly, when the bound on consecutive failures is exceagggdincreases to and

r is recalculated. The algorithm also checks to ensure that the currenenaitariables never
falls belowrmin. If this occursy, rmin andrmax are all set to the current number of variables. RBE
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Given: L, €1, C, N, 'max min, tolerance

compute tablesyn(i,r) andkopt(i,r) for rmin < r < rmax

' maxtI'min
2

successfail «— 0
h < hypothesis produced g onn inputs

repeat

K« Kopt(n,r)
selectk variables at random and remove them
h < hypothesis produced hg onn— k inputs
if e(h’) —e(h) < tolerancethen

n—n-k

h—H

success— success 1

fail — 0
else

replace the selectddvariables

fail — fail +1

success— 0

if r <rminthen
I Fmax Mmin <N
else iffail > ciE~(n,r,k) then
Mmin < T
[ rma><12erin
successfail «+ 0
else ifsuccess> co(r —E~(n,r,k)) then
Mmax<T

[« rmaxer"min

successfail < 0

until rmin < rmaxand fail < c;E~(n,r,k)

Table 3: Randomized variable elimination algorithm including a search for

terminates whenni, andrmax converge and; E~(n, r, k) consecutive variable selections fail. Table

3 shows the RVES algorithm.

While RVErS can produce good performance without finding the exact valughafv well the
estimated value must approximate the actual value is unclear. An importantifacketermining
the complexity of RVES is how quickly the algorithm reaches a good estimate fdn the best
case, the search fomwill settle on a good approximation of the actual number of relevant variables
immediately, and the RVE complexity bound will apply. In the worst case, theslsdar r will
proceed slowly over values afthat are too high, causing RVE to behave like the individual

removal algorithm.
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Algorithm Mean Updates Mean Time (s) Mean Calls Mean Inputs
RVE (Kopt) 5.5x10° 359.9 81.1 10.0
max= 20 6.5<10° 500.7 123.8 10.8
Imax= 40 8.0<10° 603.8 151.3 10.2
Imax= 60 9.3x10° 678.8 169.0 10.0
I'max= 80 10.0<10° 694.7 172.3 10.0
r'max= 100 11.%10° 740.7 184.1 9.9
RVE (k=1) 12.7x10° 644.7 138.7 10.0

Table 4: Results of RVE and RVYE for several values afhax Mean calls refers to the number
calls made to the learning algorithm. Mean inputs refers to the number of inpddys
the final hypothesis.

With respect to the analysis presented in Section 4.2.1, note that the cocstands, do not
impact the total cost of performing variable selection. However, a largeoru of adjustments to
I'min @ndrmax do impact the total cost negatively.

6.2 An Experimental Comparison of RVE and RVErS

The RVES algorithm was applied to the seven-of-ten problems using the same condiiding
experiments with RVE. Table 4 shows the results of running F8/Based on five values ofaxand
rmin = 2. The results show that for increasing valuesgfy, the performance of RMES degrades
slowly with respect to cost. The difference between RSRvith rmax= 100 and RVE withk = 1

is significant at the 95% confidence levg £ 0.049), as is the difference between R\Ewith
'max= 20 and RVE withk = kot (p = 0.0005). However, this slow degradation does not hold in
terms of run time or number of calls to the learning algorithm. Here, only versibRYErS with
rmax= 20 or 40 show an improvement over RVE wih= 1.

The RVES algorithm termination criteria causes the sharp increase in the number atocalls
the learning algorithm. Recall that aspproaches the probability of a failed selection increases.
This means that the number of allowable selection failures grows as the algoeg#irs completion.
Thus, the RVES algorithm makes many calls to the learner using a small number of infisn
attempt to determine whether the search should be terminated. The searotofopounds the
effect. If, at the end of the search, the irrelevant variables havedeeeoved butmiy andrmax have
not converged, then the algorithm must work through several failates®egs in order to terminate.

Figure 3 plots of the number of variables selected compared to the avetagaumber of
weight updates forax = 20, 60 and 100. The error bars represent the standard deviation in the
number of updates. Notice the jump in the number of updates required folgthrittam to reach
completion (represented by number of inputs equals ten) compared to themamipdates re-
quired to reach twenty remaining inputs. This pattern does not appear isthlésrof either version
of the RVE algorithm shown in Figure 2. Traces of the R@Ealgorithm support the conclusion
that many calls to the learner are needed to reach termination even afterréne set of variables
has been found.
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Figure 3: A comparison between the number of inputs on which the therntagiesns are trained
and the aggregate number of updates performed using theSR&Igorithm.

The increase in run times follows directly from the increasing number of callsetéetirner.
The thermal perceptron algorithm carries a great deal of overhdaefiected by the number of
updates. Since the algorithm executes for a fixed number of epochsirthiene of any call to the
learner will contribute noticeably to the run time of RME, regardless of the number of selected
variables. Contrast this behavior to that of learner whose cost is lbasefirmly on the number
of input variables, such as naive Bayes. Thus, even though ®dlvays requires fewer weight
updates than RVE witk = 1, the latter may still run faster.

This result suggests that the termination criterion of the RV&lgorithm is flawed. The large
number of calls to the learner at the end of the variable elimination processsreaportion of the
advantage generated earlier in the search. More importantly, the exeebemof calls to the learner
does not respect the very careful search trajectory computed bgsh&iaction. Although our cost
function for the learneM(L,n) does take the overhead of the thermal perceptron algorithm into
account, there is no allowance for unnecessary calls to the learnere Fesearch with randomized
variable elimination should therefore include a better termination criterion.

7. Experiments with RVErS

We now examine the general performance properties of randomizedleaekmination via ex-
periments with several data sets. The previous experiments with perceptrdhs seven-of-ten
problem focused on performance with respect to the cost metric. Theviooexperiments are
concerned primarily with minimizing run time and the number of calls to the learner wiala-
taining or improving accuracy. All tests were run on a 3.12 GHz Intel Xemongssor.
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Data Set Variables Classes Train Size TestSize Valuggf
internet-ad 1558 2 3279 CV 1558, 750, 1p0
mult. feature 240 10 2000 Ccv 240, 150, 50
DNA 180 3 2000 1186 180, 100, 50
LED 150 10 2000 Ccv 150, 75, 26
opt-digits 64 10 3823 1797 64, 40, 25
soybean 35 19 683 cv 35, 25,15
sick-euthyroid 25 2 3164 CcvVv 25,18, 10
monks-2-local 17 2 169 432 17,10,/5

Table 5: Summary of data sets.

Unlike the linearly-separable perceptron experiments, the problems eseddinot necessarily
have solutions with zero test error. The learning algorithms may prodysettgses with more
variance in accuracy, requiring a more sophisticated evaluation funclibe. utility of variable
selection with respect to even the most sophisticated learning algorithms isnveglhk see for
example Kohavi and John (1997) or Weston, Mukherjee, Chapelle, PBntijgio, and Vapnik
(2000). The goal here is to show that our comparatively liberal eliminationodeghcrifices little
in terms of accuracy and gains much in terms of speed.

7.1 Learning Algorithms

The RVES algorithm was applied to two learning algorithms. The first is the C4.5 relealgm8
rithm (Quinlan, 1993) for decision tree induction with options to avoid pruring early stopping.
We avoid pruning and early stopping because these are forms of vag@btgion, and may obscure
the performance of RVIES. The cost metric for C4.5 is based on the number of calls to the gain-
ratio data purity criterion. The cost of inducing a tree is therefore rough&dratic in the number
of variables: one call per variable, per decision node, with at most a Imaaber of nodes in the
tree. Recall that an exact metric is not needed, only the order with itedsgbe number of variables
must be correct.

The second learning algorithm used is naive Bayes, implemented as @dsbyitMitchell
(1997). Here, the cost metric is based on the number of operationseédaibuild the condi-
tional probability table, and is therefore linear in the number of inputs. Ictipe these tables need
not be recomputed for each new selection of variables, as the irretedd@tentries can simply be
ignored. However, we recompute the tables here to illustrate the genseahoahich the learning
algorithm must start from scratch.

7.2 Data Sets

A total of eight data sets were selected. Table 5 summarizes the data seticantentation is
generally available from the UCI repository (Blake and Merz, 1998)epkfor the DNA problem,
which is from StatLog (King et al., 1995). The first five problems reflgoteference for data with
an abundance of variables and a large number of instances in ordentmskeate the efficiency of
RVErS. The last three problems are included to show how 8/gerforms on smaller problems,
and to allow comparison with other work in variable selection. Further testsnalies data sets
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are possible, but not instructive, as randomized elimination is not intendethfa sets with few
variables.

Three of the data sets (DNA, opt-digits, and monks) include predetermiaigihty and test
sets. The remaining problems used ten-fold cross validation. The velfsios lo0ED problem used
here was generated using code available at the repository, and inalgdesiption of 10% of the
class labels. Following Kohavi and John, the monks-2 data used herdeasciulocal (one of)
encoding for each of the original six variables for a total of 17 Booleaiables. The original
monks-2 problem contains no irrelevant variables, while the encodsbuerontains six irrelevant
variables.

7.3 Methodology

For each data set and each of the two learning algorithms (C4.5 and rayes)Bwe ran four
versions of the RVES algorithm. Three versions of RVE use different values of,ax in order to
show how the choice af,a«affects performance. The fourth version is equivalent to RVE lwithl
using a stopping criterion based on the number of consecutive faillwesRYE S). This measures
the performance of removing variables individually given that the numbeglevant variables is
completely unknown. For comparison, we also ran forward step-wisetsgiebackward step-wise
elimination and a hybrid filtering algorithm. The filtering algorithm simply ranked #réables by
gain-ratio, executed the learner using the first 1, 2, 3N variables, and selected the best.

The learning algorithms used here provide no performance guaraatebsiay produce highly
variable results depending on variable selections and available datavéi selection algorithms
therefore perform five-fold cross-validation using the training data taiotan average hypothesis
accuracy generated by the learnerdach selection of variable3he methods proposed by Kohavi
and John (1997) could be used to improve error estimates for cases imtivbicariance in hypoth-
esis error rates is high. Their method should provide reliable estimatesjistiag the values of
I'min @Ndrmax regardless of learning algorithm.

Preliminary experiments indicated that the RA&algorithm is more prone to becoming bogged
down during the selection process than deterministic algorithms. We thesefimesmall tolerance
(0.002) as shown in Table 3, which allows the algorithm to keep only very gelettsons of vari-
ables while still preventing the selection process from stalling unnecess&eligave not performed
extensive tests to determine ideal tolerance values.

The final selections produced by the algorithms were evaluated in one afdy® Domains
for which there no specific test set is provided were evaluated via tdrefoss-validation. The
remaining domains used the provided training and test sets. In the sesmadwearan each of the
four RVErS versions five times in order to smooth out any fluctuations due to the ranatome rof
the algorithm.

7.4 Results

Tables 6—9 summarize the results of running the R¥&lgorithm on the given data sets using naive
Bayes and C4.5 for learning algorithms. In the tabitess denotes the number of search iterations,
evalsdenotes the number of subset evaluations performpdisdenotes the size of the final set of
selected variablegrror rates include the standard deviation where applicablecasttepresents
the total cost of the search with respect to the learner’'s cost metric. fEhediv in each block
shows the performance of the learner prior to variable selection, whileethaining rows show
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Data Set Learning  Selection | lters Subset Inputs Percent Time Search
Algorithm  Algorithm Evals Error (sec) Cost

internet  Bayes 1558  3.6:0.9 0.5 4.6%10°
Fmax= 100 137 137 378 3812 165 6.1%10°

rmax= 750 536 536 9.2 3212 790 3.9%1C°

rmax= 1558 | 845 845 175 2808 1406 8.2&1C°

k=1 1658 1658 8.8 381.2 2685 1.46¢10W0

forward 20 30810 189 2508 22417 5.3210°

backward NA

filter 1558 1558 837 340.9 2614 1.4410W0
internet C4.5 1558  3.6:0.8 48 2.0410°

Fmax= 100 340 340 339 3310 538 3.3x10
Fmax= 750 | 1233 1233 257 3F12 40656 2.6%10°
rmax= 1558 | 1489 1489 20.0 3213 78508 5.0%10°

k=1 1761 1761 206 381.0 91204 6.0%10°
forward 19 28647 175 3212 18388 1.9%10
backward NA
filter 1558 1558 640 3110 77608 3.9%1C°
mult-ftr  Bayes 240 34.145 0.1 45K10°
Fmax= 50 53 53 18.8 18.320 13 3.09<10’
Fmax= 150 84 84 194 17547 27 7.2810’
Mmax= 240 112 112 19.9 17522 41 1.13%1C°
k=1 341 341 17.2 15%3.0 99 2.5%10°
forward 20 4539 18.7 12316 527 7.5%10°
backward 186 27323 55.6 13081.7 12097 3.5%1010
filter 240 240 536 22527 83 2.30«10°
mult-ftr  C4.5 240 22.3:4.0 0.6 3.7410°

Fmax= 50 306 306 223 22420 241 1.13%107
rmax= 150 | 459 459  21.3 20227 427  2.1x%10
rmax= 240 | 474 474 220 22435 519 2.66¢107

k=1 460 460 229 20525 523 2.7k10
forward 26 5960 25.3 20435 2004 5.0610°
backward 151 24722 90.8 20#43.1 51018 2.9&10°
filter 240 240 140 21227 354 1.9%10’

Table 6: Variable selection results using the naive Bayes and C4.5 lealgiorithms.

the performance of the seven selection algorithms. Finally, “NA’ indicatdghieeexperiment was
terminated due to excessive computational cost.

The performance of RVES on the five largest data sets is encouraging. In most casesRVE
was comparable to the performance of step-wise selection with respechdéoatization, while
requiring substantially less computation. This effect is most clear in the mulafér skt, where
forward selection with the C4.5 learner required nearly six CPU days t¢fonrien-fold cross-
validation) while the slowest RMES version required just six hours. An exception to this trend
occurs with the internet-ad data using C4.5. Here, the huge cost of gu@4irb with most of
the variables included overwhelms RrEs ability to eliminate variables quickly. Only the most
aggressive run of the algorithm, withax= 100, manages to bypass the problem.
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Data Set Learning  Selection| Iters Subset Inputs Percent Time  Seargh
Algorithm  Algorithm Evals Error (sec) Cost

DNA Bayes 180 6.7 0.08 3.631C°
'max=50 | 359 359 242 4307 52 1.5%10°

rmax= 100 | 495 495 30.0 4208 75 2.3%10°

max= 180 | 519 519 256 5005 84 2.8%10°

k=1 469 469 23.6 4F10.3 76 2.56¢<10°
forward 19 3249 18.0 5.8 269 2.9910°
backward 34 5413 148 6.5 1399 7.14.0°
filter 180 180 101 5.7 32 1.330°
DNA C45 180 9.7 05 1.9510°

rmax=50 | 356 356 17.0 8417 198 8.4X10°
rmax=100| 384 384 162 7415 222 9.0%10°
rmax=180 | 432 432 138 6512 282 1.2K107

k=1 374 374 144 6511 274 1.1&107
forward 13 2262 120 5.9 418 2.33.0°
backward | 110 13735  72.0 8.7 18186 8.23(°
filter 180 180 17.0 7.6 163 7.30L0°
LED Bayes 150 30.3:30 0.09 2.7%1C°
fmax=25 | 127 127 227 26939 19 3.9%107

Imax= 75 293 293 174 264833 50 1.09<10°
Imax= 150 | 434 434 25.6 25826 86 2.010°

k=1 423 423 237 27821 85 2.0410°
forward 14 2006 13.0 264629 141 1.5410°
backward 14 1870 138.0 30426 667 1.9510°
filter 150 150 237 27421 34 8.4%107
LED C4.5 150 43.9:4.5 0.5 5.4&10°
max= 25 85 85 51.1 42830 89 1.0x107

Fmax= 75 468 468 258 42345 363 3.706c10’
rmax= 150 | 541 541 252 40857 440 4.48107

k=1 510 510 32.4 42527 439 4.6%107
forward 9 1286 7.8 27.832 196 9.5X10°
backward 61 7218 90.9 43535 11481 1.3%10°
filter 150 150 7.1 27335 156 1.6%107

Table 7: Variable selection results using the naive Bayes and C4.5 lealgiorithms.

The internet-ad via C4.5 experiment highlights a second point. Notice howrtlvard selection
algorithm runs faster than all but one version of R&EIn this case, the cost and time of running
C4.5 many times on a small number of variables is less than that of running @ tirfes on
many variables. However, note that a slight change in the number of itesatimeded by the
forward algorithm would change the time and cost of the search dramaticaily.is not the case
for RVErS, since each iteration involves only a single evaluation inste&@{Nj evaluations.

The number of subset evaluations made by RYE also important. Notice the growth in num-
ber of evaluations with respect to the total (initial) number of inputs. Foresgire versions of
RVErS, growth is very slow, while more conservative versions, sudh-ad grow approximately
linearly. This suggests that the theoretical results discussed for RVEreai@ for RVErS. Addi-
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Data Set Learning  Selection Iters Subset Inputs Percent Time  Seargh
Algorithm  Algorithm Evals Error (sec) Cost

opt-digits Bayes 64 17.4 0.08 25910
Imax= 25 111 111 14.2 15F#15 15.9 4.0%107

rmax=40 | 157 157 13.2 14807 229 5.9x10

fmax=64 | 162 162 144 14F10 249 6.6610

k=1 150 150 14.0 14211 247 6.76&10
forward 17 952  16.0 141 93.8 1.s10°
backward | 41 1781  25.0 135 423.0 1.890°
filter 64 64  37.0 16.1 119 3.63.0°
opt-digits C4.5 64 43.2 0.7 215107

rmax=25 | 130 130 12.0 42420 148 3.6410°
rmax=40 | 158 158 10.8 42203 181 4.4%1C°
Imax=64 | 216 216 10.4 42512 253  6.36<10°

k=1 140 140 114 42411 189 5.3% 1P
forward 16 904 15.0 41.6 645 9.6410°
backward 28 1378 38.0 44.0 2842 9.530
filter 64 64  50.0 43.6 87 2.12210°
soybean Bayes 35 7.8:2.4 0.02 2.4x10°

rmax=15 | 142 142 126 84242 59 6.4%10°
rmax=25 | 135 135 119 10558 5.8 6.26<1C°
rmax=35 | 132 132 112 9851 58 6.1%1C°

k=1 88 88 123 9.65.0 46 4.6%10°
forward 13 382 123 7329 8.9 1.0%10’
backward 19 472 18.0 7946 375 3.6%10
filter 35 35 313 7.826 2.0 1.9%1c°
C4.5 35 8640 0.04 1.2k1C°

rmax=15 | 118 118 16.3 9546 135 2.7&10°
Fmax=25 | 158 158 147 10441 186 1.9x10°
rmax=35 | 139 139 16.3 9437 17.3 3.8&10°

k=1 117 117 16.1 9335 149 3,510
forward 16 435 148 9440 33.7 3.2x10°
backward 18 455 19.1 10444 69.0 1.7%1C°
filter 35 35 30.8 8.537 3.7 6.06¢10%

Table 8: Variable selection results using the naive Bayes and C4.5 lealgioithms.

tional tests using data with many hundreds or thousands of variables weuidthuctive, but may
not be feasible with respect to the deterministic search algorithms.

RVErS does not achieve the same economy of subset evaluations on the thiteegmllems
as on the larger problems. This is not surprising, since the ratio of r¢lea@dables to total variables
is much smaller, requiring RMES to proceed more cautiously. In these cases, the valuyg.ghas
only a minor effect on performance, as R\&is unable to remove more than two or three variables
in any given step.

One problem evidenced by both large and small data sets is that theresafgpba no clear
choice of a best value fog,ax Conservative versions of RYE tend to produce lower error rates,
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Data Set  Learning  Selection Iters Subset Inputs Percent Time  Seargh
Algorithm  Algorithm Evals Error (sec) Cost
euthyroid Bayes 25 6.2£1.3 0.02 7.5410°
Fmax= 10 30 30 2.0 4.615 2.1 2.651C°
Fmax= 18 39 39 2.0 4812 1.3 3.7%10°
max= 25 46 46 2.3 5.%1.4 1.6 4.3%10°
k=1 35 35 1.7 5812 1.5 4.86<10°
forward 5 118 4.2 4611 3.4 6.45¢10°
backward 16 263 11.3 4213 14.4 5.9%107
filter 25 25 4.7 4.20.6 1.4 4.16¢10°
C4.5 25 2. 410 0.2 1.00<10°
rmax= 10 49 49 2.9 2408 210 2.9%10
Imax= 18 63 63 3.3 2.20.7 276 4.5&10
Imax= 25 55 55 2.7 2.50.8 25.3 4.9%10*
k=1 54 54 3.8 2309 294 6.3%10%
forward 7 151 5.9 2.407 51.8 3.8%10*
backward 16 269 11.0 2509 200.0 6.7%10°
filter 25 25 15.2 2#11 154 3.610*
monks-2  Bayes 17 39.4 0.01 3.1%10°
Imax=5 25 25 2.6 36.13.2 0.02 1.1x1C°
Imax= 10 54 54 4.0 37.22.3 0.05 25x1C°
Imax= 17 74 74 6.0 37.43.1 0.08 4.9%1C°
k=1 41 41 6.0 36.863.1 0.04 2.8%1C°
forward 2 33 1.0 329 0.02 6.7010
backward 8 99 11.0 384 0.13 9.9310°
filter 17 17 2.0 40.3 0.01 1.2110°
C4.5 17 23.6 0.03 5.1410%
Imax= 5 36 36 8.2 16.#109 0.8 2.34«10*
I'max= 10 84 84 6.2 4.604 1.9 3.7410*
Fmax= 17 79 79 6.4 6.5:4.7 1.8 4.63%10
k=1 55 55 6.2 4,400 1.4 4.13%10
forward 2 33 1.0 32.9 0.6 3.96510°
backward | 13 139 6.0 4.4 3.9 1.6110°
filter 17 17 13.0 35.6 0.4 15110

Table 9: Variable selection results using the naive Bayes and C4.5 lealgiorithms.

but there are exceptions. In some casgg, has very little effect on error. However, in most cases,
small values of nax have a distinct positive effect on run time.

The results suggest two other somewhat surprising conclusions. Ora mattkward elimina-
tion does not appear to have the commonly assumed positive effect oraliaten. Step-wise
forward selection tends to outperform step-wise backward elimination,uglth@andomization of-
ten reduces this effect. The second conclusion is that the hybrid filterithlmoperforms well in
some cases, but worse than RNEznd step-wise selection in most cases. Notice also that for prob-
lems with many variables, RV runs as fast or faster than the filter. Additional experiments along
these lines would be instructive.
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Figure 4: Naive Bayes overfitting plots for DNA data.
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Overfitting is sometimes a problem with greedy variable selection algorithms. eSiguand
5 show both the test and inner (training) cross-validation error ratethéoselection algorithms
on naive Bayes and C4.5 respectively. Solid lines indicate test errde déshed lines indicate
the inner cross-validation error. Notice that the test error is not alwagsnized with the final
selections produced by RYE. The graphs show that RV& does tend to overfit naive Bayes, but
not C4.5 (or at least to a lesser extent). Trace data from the other tlaéaysee with this conclusion.

There are at least two possible explanations for overfitting byf®/Pne is that the tolerance
level either causes the algorithm to continue eliminating variables when it sktmgd or allows
elimination of relevant variables. In either case, a better adjusted tolel@raeshould improve
performance. The monks-2 data set provides an example. In this ceetdferance is set to zero,
RVErS reliably finds variable subsets that produce low-error hypothesewith

A second explanation is that the stopping criteria, which becomes more lditbcsatisfy as
the algorithm progresses, causes the elimination process to becomeatiweszdn this case the
solution may be to augment the given stop criteria with a hold-out data setditioacto the vali-
dation set). Here the algorithm monitors performance in addition to countirgecative failures,
returning the best selection, rather than simply the last. Combining this overfigsadf with the
above performance results suggests that F8/i8 capable of performing quite well with respect to
both generalization and speed.

8. Discussion

The speed of randomized variable elimination stems from two aspects of thigratgoOne is the
use of large steps in moving through the search space of variable sdtse Asmber of irrelevant
variables grows, and the probability of selecting a relevant variabledora shrinks, RVE attempts
to take larger steps toward its goal of identifying all of threlevantvariables. In the face of many
irrelevant variables, this is a much easier task than attempting to identify thamelariables.

The second source of speed in RVE is the approach of removing variaimeediately, instead
of finding the best variable (or set) to remove. This is much less consenthtin the approach
taken by step-wise algorithms, and accounts for much of the benefit of RMiEactice, the full
benefit of removing multiple variables simultaneously may only be beginning to iad&erin the
data sets used here. However, we expect that as domains scale up, melkiglioss will become
increasingly important. One example of this occurs in the STL algorithm (Utgalf Stracuzzi,
2002), which learns many concepts over a period of time. There, the mwhleailable input
variables grows as more concepts are learned by the system.

Consider briefly the cost of forward selection wrapper algorithms. @retep-wise search is
bounded byO(rNM(L,r)) for forward selection an@(N(N —r)M(L,N)) for backward elimina-
tion, provided it does not backtrack or remove (or add) previoushedddr removed) variables.
The bound on the backward approach reflects both the larger numbgapsfrequired to remove
the irrelevant variables and the larger number of variables used atatth the learner. The cost
of training each hypothesis is small in the forward greedy approach geshpa RVE, since the
number of inputs to any given hypothesis is much smaller (bounded roughly tHowever, the
number of calls to the learning algorithm is polynomiaNnAs the number of irrelevant variables
increases, even a forward greedy approach to variable selectiombsguickly unmanageable.

The cost of a best-first search using compound operators (Kohdvahn, 1997) is somewhat
harder to analyze. Their approach combines the two best operatarsaafleigrariable or remove
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variable) and then checks whether the result is an improvement. If soeshéiing operator is
combined with the next best operator and tested, continuing until there is moviempent. The-
oretically this type of search could find a solution using approximatelijp@vard evaluations or
2(N —r) backward subset evaluations. However, this would require the algotitinake the cor-
rect choice at every step. The experimental results (Kohavi and 168if) suggest that in practice
the algorithm requires many more subset evaluations than this minimum.

Compare the above bounds on forward and backward greedy sedhet of RVE given a fixed
k =1, which isO(rNM(L,N)). Notice that the number of calls to the learning algorithm is the
same for RVE with fixeck and a greedyorward search (the cost of learning is different however).
The empirical results support the conclusion that the two algorithms produadarscost, but also
show that RVE withk = 1 requires less CPU time. The source of this additional economy is unclear,
although it may be related to various overhead costs associated with thadealgorithms. RVE
requires many fewer total learner executions, thereby reducing esgrh

In practice, thek = 1 version of RVES often makes fewer thaiN calls to the learning algo-
rithm. This follows from the very high probability of a successful selectibarnirrelevant variable
at each step. In cases whidns much larger than, the algorithm withk = 1 makes roughlyN calls
to the learner as shown in Tables 6 and 7. Additional economy may also &iblposherk is fixed
at one. Each variable should only need to be tested once, allowingSRiEnake exactl\ calls
to the learner. Further experiments are needed to confirm this intuition.

Although the RVE algorithm using a fixéd= 1 is significantly more expensive than the optimal
RVE or RVE'S using a good guess fofay experiments and analysis show that this simple algo-
rithm is generally faster than the deterministic forward or backward appesaprovided that there
are enough irrelevant variables in the domain. As the natid decreases, and the probability of
selecting an irrelevant variable at random increases, the benefianélamized approach improves.
Thus, even when no information about the number of relevant variabdesilsble, a randomized,
backward approach to variable selection may be beneficial.

A disadvantage to randomized variable selection is that there is no clear wagower from
poor choices. Step-wise selection algorithms sometimes consider both addingnaoving vari-
ables at each step, so that no variable is ever permanently selected ortelimivaybrid version of
RVErS which considers adding a single variable each time a set a variables is elthignadssible,
but this would ultimately negate much of the algorithm’s computational benefit.

Step-wise selection algorithms are sometimes parallelized in order to speedetitsero-
cess. This is due in large part to the very high cost of step-wise seled®¥E mitigates this
problem to a point, but there is no obvious way to parallelize a randomizectisel@lgorithm.
Parallelization could be used to improve generalization performance by afjdivénalgorithm to
evaluate several subsets simultaneously and then choose the best.

9. Future Work

There are at least three possible directions for future work with RVE. first is an improved
method for choosindc whenr is unknown. We have presented an algorithm based on a binary
search, but RVES still wastes a great deal of time deciding when to terminate the search, and
can quickly degenerate into a one-at-a-time removal strategy if bad decsiermade early in

the search. Notice however, that this worst-case performance is still tiettestepwise backward
elimination, and comparable to stepwise forward selection, both populaitaiger
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A second direction for future work involves further study of the effgfdesting very few of the
possible successors to the current search node. Testing all posgibéssors is the source of the
high cost of most wrapper methods. If a sparse search, such aséubby RVE, does not sacrifice
much quality in general, then other fast wrapper algorithms may be possible.

A third possible direction involves biasing the random selections at each Htepset ofk
variables fails to maintain evaluation performance, then at least one lofithist have been relevant
to the learning problem. Thus, variables included in a failed selection may\wedigs more likely
to be relevant. This “relevance likelihood” can be tracked throughouglin@nation process and
used to bias selections at each step.

10. Conclusion

The randomized variable elimination algorithm uses a two-step process toegémalevant input
variables. First, a sequence of valuesKpthe number input variables to remove at each step, is
computed such that the cost of removingMH-r irrelevant variables is minimized. The algorithm
then removes the irrelevant variables by randomly selecting inputs for e#raogording to the
computed schedule. Each step is verified by generating and testing a ésipdthensure that the
new hypothesis is at least as good as the existing hypothesis. A randampizeshch to variable
elimination that simultaneously removes multiple inputs produces a fattgpeed-up over ap-
proaches that remove inputs individually, provided that the numbérelevant variables is known

in advance.

When number of relevant variables is not known, a searcl foay be conducted in parallel
with the search for irrelevant variables. Although this approach wastae sf the benefits gener-
ated by the theoretical algorithm, a reasonable upper bound on the nuinélevant variables still
produces good performance. When even this weaker condition chargatisfied, a randomized
approach may still outperform the conventional deterministic wrappeoappes provided that the
number of relevant variables is small compared to the total number of vaziabi@ndomized ap-
proach to variable selection is therefore applicable whenever the tanyetinl is believed to have
many irrelevant variables.

Finally, we conclude that an explicit search through the space of vagabgets is not necessary
to achieve good performance from a wrapper algorithm. Randomizedieaeabmination provides
competitive performance without incurring the high cost of expandingeaatliating all successors
of a search node. As a result, randomized variable elimination scales wefidbeurrent wrapper
algorithms for variable selection.
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