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Abstract
Variable selection, the process of identifying input variables that are relevant to a particular learning
problem, has received much attention in the learning community. Methods that employ a learning
algorithm as a part of the selection process (wrappers) havebeen shown to outperform methods
that select variables independently from the learning algorithm (filters), but only at great compu-
tational expense. We present a randomized wrapper algorithm whose computational requirements
are within a constant factor of simply learning in the presence of all input variables, provided that
the number of relevant variables is small and known in advance. We then show how to remove the
latter assumption, and demonstrate performance on severalproblems.

1. Introduction

When learning in a supervised environment, a learning algorithm is typically presented with a set
of N-dimensional data points, each with its associated target output. The learningalgorithm then
outputs a hypothesis describing the function underlying the data. In practice, the set ofN input
variables is carefully selected by hand in order to improve the performanceof the learning algorithm
in terms of both learning speed and hypothesis accuracy.

In some cases there may be a large number of inputs available to the learning algorithm, few of
which are relevant to the target function, with no opportunity for human intervention. For example,
feature detectors may generate a large number of features in a pattern recognition task. A second
possibility is that the learning algorithm itself may generate a large number of newconcepts (or
functions) in terms of existing concepts. Valiant (1984), Fahlman and Lebiere (1990), and Kivinen
and Warmuth (1997) all discuss situations in which a potentially large number offeatures are created
during the learning process. In these situations, an automatic approach to variable selection is
required.

One approach to variable selection that has produced good results is the wrapper method (John
et al., 1994). Here, a search is performed in the space of variable subsets, with the performance
of a specific learning algorithm based on such a subset serving as an evaluation function. Using
the actual generalization performance of the learning algorithm as an evaluation metric allows this
approach to search for the most predictive set of input variables with respect to the learner. However,
executing the learning algorithm for each selection of variables during the search ultimately renders
the approach intractable in the presence of many irrelevant variables.
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In spite of the cost, variable selection can play an important role in learning. Irrelevant variables
can often degrade the performance of a learning algorithm, particularly when data are limited. The
main computational cost associated with the wrapper method is usually that of executing the learn-
ing algorithm. The learner must produce a hypothesis for each subset ofthe input variables. Even
greedy selection methods (Caruana and Freitag, 1994) that ignore largeareas of the search space
can produce a large number of candidate variable sets in the presence ofmany irrelevant variables.

Randomized variable elimination avoids the cost of evaluating many variable setsby taking
large steps through the space of possible input sets. The number of variables eliminated in a single
step depends on the number of currently selected variables. We presenta cost function whose pur-
pose is to strike a balance between the probability of failing to select successfully a set of irrelevant
variables and the cost of running the learning algorithm many times. We use a form of backward
elimination approach to simplify the detection of relevant variables. Removal ofany relevant vari-
able should immediately cause the learner’s performance to degrade. Backward elimination also
simplifies the selection process when irrelevant variables are much more common than relevant
variables, as we assume here.

Analysis of our cost function shows that the cost of removing all irrelevant variables is dom-
inated by the cost of simply learning with allN variables. The total cost is therefore within a
constant factor of the cost of simply learning the target function based onall N input variables,
provided that the cost of learning grows at least polynomially inN. The bound on the complexity
of our algorithm is based on the complexity of the learning algorithm being used. If the given learn-
ing algorithm executes in timeO(N2), then removing theN− r irrelevant variables via randomized
variable elimination also executes in timeO(N2). This is a substantial improvement compared to
the factorN or more increase experienced in removing inputs one at a time.

2. Variable Selection

The specific problem of variable selection is the following: Given a large set of input variables and a
target concept or function, produce a subset of the original input variables that predict best the target
concept or function when combined into a hypothesis by a learning algorithm.The term “predict
best” may be defined in a variety of ways, depending on the specific application and selection
algorithm. Ideally the produced subset should be as small as possible to reduce training costs and
help prevent overfitting.

From a theoretical viewpoint, variable selection should not be necessary. For example, the pre-
dictive power of Bayes rule increases monotonically with the number of variables. More variables
should always result in more discriminating power, and removing variables should only hurt. How-
ever, optimal applications of Bayes rule are intractable for all but the smallest problems. Many
machine learning algorithms perform sub-optimal operations and do not conform to the strict con-
ditions of Bayes rule, resulting in the potential for a performance decline in the face of unnecessary
inputs. More importantly, learning algorithms usually have access to a limited number of exam-
ples. Unrelated inputs require additional capacity in the learner, but do not bring new information
in exchange. Variable selection is thus a necessary aspect of inductivelearning.

A variety of approaches to variable selection have been devised. Most methods can be placed
into one of two categories:filter methods orwrappermethods. Filter approaches perform variable
selection independently of the learning algorithm, while wrappers make learner-dependent selec-
tions. A third group of special purpose methods perform feature selection in the context of neural
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networks, known as parameter pruning. These methods cannot directly perform variable selection
for arbitrary learning algorithms; they are approaches to removing irrelevant inputs from learning
elements.

Many variable selection algorithms (although not all) perform some form of search in the space
of variable subsets as part of their operation. A forward selection algorithm begins with the empty
set and searches for variables to add. A backward elimination algorithm begins with the set of all
variables and searches for variables to remove. Optionally, forward algorithms may occasionally
choose to remove variables, and backward algorithms may choose to add variables. This allows the
search to recover from previous poor selections. The advantage of forward selection is that, in the
presence of many irrelevant variables, the size of the subsets will remain relatively small, helping to
speed evaluation. The advantage of backward elimination is that recognizing irrelevant variables is
easier. Removing a relevant variable from an otherwise complete set should cause a decline in the
evaluation, while adding a relevant variable to an incomplete set may have little immediate impact.

2.1 Filters

Filter methods use statistical measures to evaluate the quality of the variable subsets. The goal
is to find a set of variables that is best with respect to the specific quality measure. Determining
which variables to include may either be done via an explicit search in the space of variable subsets,
or by numerically weighting the variables individually and then selecting those with the largest
weight. Filter methods often have the advantage of speed. The statistical measures used to evaluate
variables typically require very little computation compared to cost of running alearning algorithm
many times. The disadvantage is that variables are evaluated independently,not in the context of
the learning problem.

Early filtering algorithms include FOCUS (Almuallim and Dietterich, 1991) and Relief(Kira
and Rendell, 1992). FOCUS searches for a smallest set of variables that can completely discriminate
between target classes, while Relief ranks variables according to a distance metric. Relief selects
training instances at random when computing distance values. Note that this isnot related to our
approach of selecting variables at random.

Decision trees have also been employed to select input variables by first inducing a tree, and then
selecting only those variables tested by decision nodes (Cardie, 1993; Kubat et al., 1993). In another
vein, Koller and Sahami (1996) discuss a variable selection algorithm based on cross entropy and
information theory.

Methods from statistics also provide a basis for a variety of variable filteringalgorithms. Correlation-
based feature selection (CFS) (Hall, 1999) attempts to find a set of variables that are each highly
correlated with the target function, but not with each other. The ChiMerge(Kerber, 1992) and Chi2
algorithms (Liu and Setiono, 1997) remove both irrelevant and redundantvariables using aχ2 test
to merge adjacent intervals of ordinal variables.

Other methods from statistics solve problems closely related to variable selection. For example,
principal component analysis (see Dunteman, 1989) is a method for transforming the observed
variables into a smaller number of dimensions, as opposed to removing irrelevant or redundant
variables. Projection pursuit (Friedman and Tukey, 1974) and factor analysis (Thurstone, 1931)
(see Cooley and Lohnes, 1971, for a detailed presentation) are used both to reduce dimensionality
and to detect structure in relationships among variables.
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Discussion of filtering methods for variable selection also arises in the patternrecognition liter-
ature. For example, Devijver and Kittler (1982) discuss the use of a varietyof linear and non-linear
distance measures and separability measures such as entropy. They alsodiscuss several search al-
gorithms, such as branch and bound and plusl -take awayr. Branch and bound is an optimal search
technique that relies on a careful ordering of the search space to avoidan exhaustive search. Plusl -
take awayr is more akin to the standard forward and backward search. At each step, l new variables
are selected for inclusion in the current set andr existing variables are removed.

2.2 Wrappers

Wrapper methods attempt to tailor the selection of variables to the strengths and weaknesses of
specific learning algorithms by using the performance of the learner to evaluate subset quality. Each
candidate variable set is evaluated by executing the learning algorithm given the selected variables
and then testing the accuracy of the resulting hypotheses. This approachhas the advantage of using
the actual hypothesis accuracy as a measure of subset quality. The problem is that the cost of
repeatedly executing the learning algorithm can quickly become prohibitive.Nevertheless, wrapper
methods do tend to outperform filter methods. This is not surprising given that wrappers evaluate
variables in the context of the learning problem, rather than independently.

2.2.1 ALGORITHMS

John, Kohavi, and Pfleger (1994) appear to have coined the term “wrapper” while researching the
method in conjunction with a greedy search algorithm, although the technique has a longer history
(Devijver and Kittler, 1982). Caruana and Freitag (1994) also experimented with greedy search
methods for variable selection. They found that allowing the search to eitheradd variables or remove
them at each step of the search improved over simple forward and backward searches. Aha and
Bankert (1994) use a backward elimination beam search in conjunction withthe IB1 learner, but
found no evidence to prefer this approach to forward selection. OBLIVION (Langley and Sage,
1994) selects variables for the nearest neighbor learning algorithm. Thealgorithm uses a backward
elimination approach with a greedy search, terminating when the nearest neighbor accuracy begins
to decline.

Subsequent work by Kohavi and John (1997) used forward and backward best-first search in the
space of variable subsets. Search operators generally include addingor removing a single variable
from the current set. This approach is capable of producing a minimal setof input variables, but
the cost grows exponentially in the face of many irrelevant variables. Compound operators generate
nodes deep in the search tree early in the search by combining the best children of a given node.
However, the cost of running the best-first search ultimately remains prohibitive in the presence of
many irrelevant variables.

Hoeffding races (Maron and Moore, 1994) take a different approach. All possible models (se-
lections) are evaluated via leave-one-out cross validation. For each ofthe N evaluations, an error
confidence interval is established for each model. Models whose error lower bound falls below the
upper bound of the best model are discarded. The result is a set of models whose error is insignifi-
cantly different.

Several algorithms for constructing regression models are also forms of wrapper methods. For
example, Least angle regression (Efron et al., 2003), which generalizes and improves upon several
forward selection regression algorithms, adds variables to the model incrementally.
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Genetic algorithms have been also been applied as a search mechanism for variable selection.
Vafaie and De Jong (1995) describe using a genetic algorithm to performvariable selection. They
used a straightforward representation in which individual chromosomes were bit-strings with each
bit marking the presence or absence of a specific variable. Individualswere evaluated by training
and then testing the learning algorithm. In a similar vein, SET-Gen (Cherkauerand Shavlik, 1996)
used a fitness (evaluation) function that included both the accuracy of theinduced model and the
comprehensibility of the model. The learning model used in their experiments wasa decision tree
and comprehensibility was defined as a combination of tree size and number offeatures used. The
FSS-EBNA algorithm (Inza et al., 2000) used Bayesian Networks to mate individuals in a GA-based
approach to variable selection.

The relevance-in-context (RC) algorithm (Domingos, 1997) is based onthe idea that some fea-
tures may only be relevant in particular areas of the instance space for instance based (lazy) learners.
Clusters of training examples are formed by finding examples of the same classwith nearly equiva-
lent feature vectors. The features along which the examples differ are removed and the accuracy of
the entire model is determined. If the accuracy declined, the features are restored and the failed ex-
amples are removed from consideration. The algorithm continues until thereare no more examples
to consider. Results showed that RC outperformed other wrapper methods with respect to a 1-NN
learner.

2.2.2 LEARNER SELECTIONS

Many learning algorithms already contain some (possibly indirect) form of variable selection, such
as pruning in decision trees. This raises the question of whether the variable selections made by the
learner should be used by the wrapper. Such an approach would almostcertainly run faster than
methods that rely only on the wrapper to make variable selections. The wrapper selects variables
for the learner, and then executes the learner. If the resulting hypothesis is an improvement, then the
wrapper further removes all variables not used in the hypothesis before continuing on with the next
round of selections.

This approach assumes the learner is capable of making beneficial variable selections. If this
were true, then both filter and wrapper methods would be largely irrelevant.Even the most so-
phisticated learning algorithms may perform poorly in the presence of highly correlated, redundant
or irrelevant variables. For example, John, Kohavi, and Pfleger (1994) and Kohavi (1995) both
demonstrate how C4.5 (Quinlan, 1993) can be tricked into making bad decisions at the root. Vari-
ables highly correlated with the target value, yet ultimately useless in terms of making beneficial
data partitions, are selected near the root, leading to unnecessarily large trees. Moreover, these bad
decisions cannot be corrected by pruning. Only variable selection performed outside the context of
the learning algorithm can recognize these types of correlated, irrelevant variables.

2.2.3 ESTIMATING PERFORMANCE

One question that any wrapper method must consider is how to obtain a good estimate of the ac-
curacy of the learner’s hypothesis. Both the amount and quality of data available to the learner
affect the testing accuracy. Kohavi and John (1997) suggest usingmultiple runs of five-fold cross-
validation to obtain an error estimate. They determine the number of cross-validation runs by con-
tinuing until the standard deviation of the accuracy estimate is less than 1%. Thishas the nice
property of (usually) requiring fewer runs for large data sets. However, in general, cross-validation
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is an expensive procedure, requiring the learner to produce several hypotheses for each selection of
variables.

2.3 Model Specific Methods

Many learning algorithms have built-in variable (or parameter) selection algorithms which are used
to improve generalization. As noted above, decision tree pruning is one example of built-in variable
selection. Connectionist algorithms provide several other examples, known as parameter pruning.
As in the more general variable selection problem, extra weights (parameters) in a network can
degrade the performance of the network on unseen test instances, andincrease the cost of evaluat-
ing the learned model. Parameter pruning algorithms often suffer the same disadvantages as tree
pruning. Poor choices made early in the learning process can not usuallybe undone.

One method for dealing with unnecessary network parameters is weight decay (Werbos, 1988).
Weights are constantly pushed toward zero by a small multiplicitive factor in the update rule. Only
the parameters relevant to the problem receive sufficiently large weight updates to remain signifi-
cant. Methods for parameter pruning include the optimal brain damage (OBD)(LeCun et al., 1990)
and optimal brain surgeon (OBS) (Hassibi and Stork, 1993) algorithms. Both rely on the second
derivative to determine the importance of connection weights. Sensitivity-based pruning (Moody
and Utans, 1995) evaluates the effect of removing anetworkinput by replacing the input by its mean
over all training points. The autoprune algorithm (Finnoff et al., 1993) defines an importance metric
for weights based on the assumption that irrelevant weights will become zero. Weights with a low
metric value are considered unimportant and are removed from the network.

There are also connectionist approaches that specialize in learning quickly in the presence ir-
relevant inputs, without actually removing them. The WINNOW algorithm (Littlestone, 1988) for
Boolean functions and the exponentiated gradient algorithm (Kivinen andWarmuth, 1997) for real-
valued functions are capable of learning linearly separable functions efficiently in the presence of
many irrelevant variables. Exponentiated gradient algorithms, of which WINNOW is a special case,
are similar to gradient descent algorithms, except that the updates are multiplicative rather than ad-
ditive.

The result is a mistake bound that is linear in the number of relevant inputs, but only logarithmic
in the number of irrelevant inputs. Kivinen and Warmuth also observed thatthe number of examples
required to learn an accurate hypothesis also appears to obey these bounds. In other words, the num-
ber of training examples required by exponentiated gradient algorithms grows only logarithmicly in
the number of irrelevant inputs.

Exponentiated gradient algorithms may be applied to the problem of separatingthe set of rel-
evant variables from irrelevant variables by running them on the available data and examining the
resulting weights. Although exponentiated gradient algorithms produce a minimum error fit of the
data in non-separable problems, there is no guarantee that such a fit will rely on the variables rele-
vant to a non-linear fit.

Many algorithms that are directly applicable in non-linear situations experience a performance
decline in the presence of irrelevant input variables. Even support vector machines, which are often
touted as impervious to irrelevant variables, have been shown to improve performance with feature
selection (Weston et al., 2000). A more general approach to recognizingrelevant variables is needed.
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3. Setting

Our algorithm for randomized variable elimination (RVE) requires a set (or sequence) ofN-dimensional
vectorsxi with labelsyi . The learning algorithmL is asked to produce a hypothesish based only
on the inputsxi j that have not been marked as irrelevant (alternatively, a preprocessor could remove
variables marked irrelevant). We assume that the hypotheses bear some relation to the data and
input values. A degenerate learner (such as one that produces the same hypothesis regardless of
data or input variables) will in practice cause the selection algorithm ultimately to select zero vari-
ables. This is true of most wrapper methods. For the purposes of this article, we use generalization
accuracy as the performance criteria, but this is not a requirement of thealgorithm.

We make the assumption that the numberr of relevant variables is at least two to avoid degen-
erate cases in our analysis. The number of relevant variables should besmall compared to the total
number of variablesN. This condition is not critical to the functionality of the RVE algorithm; how-
ever the benefit of using RVE increases as the ratio ofN to r increases. Importantly, we assume that
the number of relevant variables is known in advance, although which variables are relevant remains
hidden. Knowledge ofr is a very strong assumption in practice, as such information is not typically
available. We remove this assumption in Section 6, and present an algorithm for estimatingr while
removing variables.

4. The Cost Function

Randomized variable elimination is a wrapper method motivated by the idea that, in thepresence
of many irrelevant variables, the probability of successfully selecting several irrelevant variables
simultaneously at random from the set of all variables is high. The algorithmcomputes the cost
of attempting to removek input variables out ofn remaining variables given thatr are relevant.
A sequence of values fork is then found by minimizing the aggregate cost of removing allN− r
irrelevant variables. Note thatn represents the number of remaining variables, whileN denotes the
total number of variables in the original problem.

The first step in applying the RVE algorithm is to define the cost metric for the given learning
algorithm. The cost function can be based on a variety of metrics, depending on which learning
algorithm is used and the constraints of the application. Ideally, a metric would indicate the amount
of computational effort required for the learning algorithm to produce a hypothesis.

For example, an appropriate metric for the perceptron algorithm (Rosenblatt, 1958) might relate
to the number of weight updates that must be performed, while the number of calls to the data
purity criterion (e.g. information gain (Quinlan, 1986)) may be a good metric for decision tree
induction algorithms. Sample complexity represents a metric that can be applied to almost any
algorithm, allowing the cost function to compute the number of instances the learner must see in
order to remove the irrelevant variables from the problem. We do not assume a specific metric for
the definition and analysis of the cost function.

4.1 Definition

The first step of defining the cost function is to consider the probability

p+(n, r,k) =
k−1

∏
i=0

(

n− r− i
n− i

)
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of successfully selectingk irrelevant variables at random and without replacement, given that there
aren remaining andr relevant variables. Next we use this probability to compute the expected
number of consecutive failures before a success at selectingk irrelevant variables fromn remaining
given thatr are relevant. The expression

E−(n, r,k) =
1− p+(n, r,k)

p+(n, r,k)

yields the expected number of consecutive trials in which at least one of ther relevant variables will
be randomly selected along with irrelevant variables prior to success.

We now discuss the cost of selecting and removingk variables, givenn and r. Let M(L ,n)
represent an upper bound on the cost of running algorithmL based onn inputs. In the case of a
perceptron,M(L ,n) could represent an estimated upper bound on the number of updates performed
by ann-input perceptron. In some instances, such as a backpropagation neural network (Rumelhart
and McClelland, 1986), providing such a bound may be troublesome. In general, the order of
the worst case computational cost of the learner with respect to the numberof inputs is all that
is needed. The bounding function should account for any assumptions about the nature of the
learning problem. For example, if learning Boolean functions requires lesscomputational effort
than learning real-valued functions, thenM(L ,n) should include this difference. The general cost
function described below therefore need not make any additional assumptions about the data.

In order to simplify the notation somewhat, the following discussion assumes a fixed algorithm
for L . The expected cost of successfully removingk variables fromn remaining given thatr are
relevant is given by

I(n, r,k) = E−(n, r,k) ·M(L ,n−k)+M(L ,n−k)
= M(L ,n−k)(E−(n, r,k)+1)

for 1≤ k≤ n− r. The first term in the equation denotes the expected cost of failures (i.e. unsuc-
cessful selections ofk variables) while the second denotes the cost of the one success.

Given this expected cost of removingk variables, we can now define recursively the expected
cost of removing alln− r irrelevant variables. The goal is to minimize locally the expected cost
of removingk inputs with respect to the expected remaining cost, resulting in a global minimum
expected cost for removing alln− r irrelevant variables. The use of a greedy minimization step
relies upon the assumption thatM(L ,n) is monotonic inn. This is reasonable in the context of
metrics such as number of updates, number of data purity tests, and sample complexity. The cost
(with respect to learning algorithmL) of removingn− r irrelevant variables is represented by

Isum(n, r) = min
k

(I(n, r,k)+ Isum(n−k, r)).

The first part of the minimization term represents the cost of removing the first k variables while the
second part represents the cost of removing the remainingn− r− k irrelevant variables. Note that
we defineIsum(r, r) = 0.

The optimal valuekopt(n, r) for k givenn andr can be determined in a manner similar to com-
puting the cost of removing alln− r irrelevant inputs. The value ofk is computed as

kopt(n, r) = argmin
k

(I(n, r,k)+ Isum(n−k, r)).
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4.2 Analysis

The primary benefit of this approach to variable elimination is that the combined cost (in terms of
the metricM(L ,n)) of learning the target function and removing the irrelevant input variables is
within a constant factor of the cost of simply learning the target function based on allN inputs. This
result assumes that the functionM(L ,n) is at least a polynomial of degreej > 0. In cases where
M(L ,n) is sub-polynomial, running the RVE algorithm increases the cost of removingthe irrelevant
inputs by a factor of log(n) over the cost of learning alone as shown below.

4.2.1 REMOVING MULTIPLE VARIABLES

We now show that the above average-case bounds on the performanceof the RVE algorithm hold.
The worst-case is the unlikely condition in which the algorithm always selects arelevant variable.
We assume integer division here for simplicity. First letk = n

r , which allows us to remove the min-
imization term from the equation forIsum(n, r) and reduces the number of variables. This value of
k is not necessarily the value selected by the above equations. However, the cost function is com-
puted via dynamic programming, and the functionM(L ,n) is assumed monotonic. Any differences
between our chosen value ofk and the actual value computed by the equations can only serve to de-
crease further the cost of the algorithm. Note also that, becausek depends on the number of current
variablesn, k changes at each iteration of the algorithm.

The probability of successp+(n, r, n
r ) is minimized whenn = r + 1, since there is only one

possible successful selection andr possible unsuccessful selections. This in turn maximizes the
expected number of failuresE−(n, r, n

r ) = r. The formula forI(n, r,k) is now rewritten as

I(n, r,
n
r
)≤ (r +1) ·M(L ,n−

n
r
),

where bothM(L ,n−k) terms have been combined.
The expected cost of removing alln− r irrelevant inputs may now be rewritten as a summation

Isum(n, r)≤
r lg(n)

∑
i=0

(

(r +1)M

(

L ,n

(

r−1
r

)i+1
))

.

The second argument to the learning algorithm’s cost metricM denotes the number of variables used
at stepi of the RVE algorithm. Notice that this number decreases geometrically towardr (recall that
n = r is the terminating condition for the algorithm). The logarithmic factor of the upper bound on
the summation, lg(n)−lg(r)

lg(1+1/(r−1)) ≤ r lg(n), follows directly from the geometric decrease in the number
of variables used at each step of the algorithm. The linear factorr follows from the relationship
betweenk andr. In general, asr increases,k decreases. Notice that asr approachesN, RVE and
our cost function degrade into testing and removing variables individually.

Concluding the analysis, we observe that for functionsM(L ,n) that are at least polynomial inn
with degreej > 0, the cost incurred by the first pass of RVE (i = 0) will dominate the remainder of
the terms. The average-case cost of running RVE in these cases is therefore bounded byIsum(N, r)≤
O(rM(L ,N)). An equivalent view is that the sum of a geometrically decreasing series converges to
a constant. Thus, under the stated assumption thatr is small compared to (and independent of)N,
RVE requires only a constant factor more computation than the learner alone.

WhenM(L ,n) is sub-linear inn (e.g logarithmic), each pass of the algorithm contributes signif-
icantly to the total expected cost, resulting in an average-case bound ofO(r2 log(N)M(L ,N)). Note
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that we use average-case analysis here because in the worst case thealgorithm can randomly select
relevant variables indefinitely. In practice however, long streaks of bad selections are rare.

4.2.2 REMOVING VARIABLES INDIVIDUALLY

Consider now the cost of removing theN− r irrelevant variables one at a time (k = 1). Once
again the probability of success is minimized and the expected number of failures is maximized at
n = r +1. The total cost of such an approach is given by

Isum(n, r) =
n−r

∑
i=1

(r +1) ·M(L ,n− i).

Unlike the multiple variable removal case, the number of variables available to thelearner at each
step decreases only arithmetically, resulting in a linear number of steps inn. This is an important
deviation from the multiple selection case, which requires only a logarithmic number of steps. The
difference between the two methods becomes substantial whenN is large. Concluding, the bound
on the average-case cost of RVE isIsum(N, r)≤O(NrM(L ,N)) whenk = 1. This is true regardless
of whether the variables are selected randomly or deterministically at each step.

In principle, a comparison should be made between the upper bound of the algorithm that re-
moves multiple variables per step and the lower bound of the algorithm that removes a single vari-
able per step in order to show the differences clearly. However, generating a sufficiently tight lower
bound requires making very strong assumptions on the form ofM(L ,n). Instead, note that the two
upper bounds are comparable with respect toM(L ,n) and differ only by the leading factorN.

4.3 Computing the Cost andk-Sequence

The equations forIsum(n, r) andkopt(n, r) suggest a simpleO(N2) dynamic programming solution
for computing both the cost and optimalk-sequence for a problem ofN variables. Table 1 shows an
algorithm for computing a table of cost andk values for eachi with r +1≤ i ≤ N. The algorithm
fills in the tables of values by starting with smalln, and bootstrapping to find values for increasingly
largen. The functionI(n, r,k) in Table 1 is computed as described above.

TheO(N2) cost of computing the sequence ofk values is of some concern. WhenN is large and
the learning algorithm requires time only linear inN, the cost of computing the optimalk-sequence
could exceed the cost of removing the irrelevant variables. In practice the cost of computing values
for k is negligible for problems up toN = 1000. For larger problems, one solution is simply to set
k = n

r as in Section 4.2.1. The analysis shows that this produces good performance and requires no
computational overhead.

5. The Randomized Variable Elimination Algorithm

Randomized variable elimination conducts a backward search through the space of variable subsets,
eliminating one or more variables per step. Randomization allows for selection ofirrelevant vari-
ables with high probability, while selecting multiple variables allows the algorithm to move through
the space without incurring the cost of evaluating the intervening points in thespace. RVE conducts
its search along a very narrow trajectory. The space of variable subsets is sampled sparsely, rather
than broadly and uniformly. This structured yet random search allows RVE to reduce substantially
the total cost of selecting relevant variables.
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Given: L ,N, r

Isum[r +1..N]← 0
kopt[r +1..N]← 0

for i← r +1 toN do
bestCost← ∞
for k← 1 to i− r do

temp← I(i, r,k)+ Isum[i−k]
if temp< bestCostthen

bestCost← temp
bestK← k

Isum[i]← bestCost
kopt[i]← bestK

Table 1: Algorithm for computingk and cost values.

A backward approach serves two purposes for this algorithm. First, backward elimination eases
the problem of recognizing irrelevant or redundant variables. As longas a core set of relevant
variables remains intact, removing other variables should not harm the performance of a learning
algorithm. Indeed, the learner’s performance mayincreaseas irrelevant features are removed from
consideration. In contrast, variables whose relevance depends on thepresence of other variables may
have no noticeable effect when selected in a forward manner. Thus, mistakes should be recognized
immediately via backward elimination, while good selections may go unrecognized by a forward
selection algorithm.

The second purpose of backward elimination is to ease the process of selecting variables. If
most variables in a problem are irrelevant, then a random selection of variables is naturally likely to
uncover them. Conversely, a random selection is unlikely to turn up relevant variables in a forward
search. Thus, the forward search must work harder to find each relevant variable than backward
search does for irrelevant variables.

5.1 Algorithm

The algorithm begins by computing the values ofkopt(i, r) for all r +1≤ i ≤ n. Next it generates an
initial hypothesis based on alln input variables. Then, at each step, the algorithm selectskopt(n, r)
input variables at random for removal. The learning algorithm is trained onthe remainingn− k
inputs, and a hypothesish is produced. If the errore(h′) of hypothesish′ is less than the errore(h) of
the previous hypothesish (possibly within a given tolerance), then the selectedk inputs are marked
as irrelevant and are all simultaneously removed from future consideration. Kohavi and John (1997)
provide an in depth discussion on evaluating and comparing hypotheses based on limited data sets.
If the learner was unsuccessful, meaning the new hypothesis had a larger error, then at least one of
the selected variables was relevant. A new set of inputs is selected and the process repeats. The
algorithm terminates when alln− r irrelevant inputs have been removed. Table 2 shows the RVE
algorithm.
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Given: L , n, r, tolerance

compute tables forIsum(i, r) andkopt(i, r)
h← hypothesis produced byL onn inputs

while n > r do
k← kopt(n, r)
selectk variables at random and remove them
h′← hypothesis produced byL onn−k inputs
if e(h′)−e(h)≤ tolerancethen

n← n−k
h← h′

else
replace the selectedk variables

Table 2: Randomized backward-elimination variable selection algorithm.

The structured search performed by RVE is easily distinguished from other randomized search
methods. For example, genetic algorithms maintain a population of states in the search space and
randomly mate the states to produce offspring with properties of both parents. The effect is an
initially broad search that targets more specific areas as the search progresses. A wide variety of
subsets are explored, but the cost of so much exploration can easily exceed the cost of a traditional
greedy search. See Goldberg (1989) or Mitchell (1996) for detailed discussions on how genetic
algorithms conduct search.

While GAs tend to drift through the search space based on the properties of individuals in
the population, the LVF algorithm (Liu and Setino, 1996) samples the space ofvariable subsets
uniformly. LVF selects both the size of each subset and the member variablesat random. Although
such an approach is not susceptible to “bad decisions” or local minima, the probability of finding
a best or even good variable subset decreases exponentially as the number of irrelevant variables
increases. Unlike RVE, LVF is a filtering method, which relies on the inconsistency rate (number
of equivalent instances divided by number of total instances) in the data with respect to the selected
variables.

5.2 A Simple Example

The preceding presentation of the RVE algorithm has remained strictly general, relying on no spe-
cific learning algorithm or cost metric. We consider now a specific example ofhow the randomized
variable elimination algorithm may be applied to a linear threshold unit. The specifictask examined
here is to learn a Boolean function that is true when seven out of ten relevant variables are true, given
a total of 100 input variables. In order to ensure that the hypotheses generated for each selection of
variables has nearly minimal error, we use the thermal perceptron training algorithm (Frean, 1992).
The thermal perceptron uses simulated annealing to settle weights regardlessof data separability.
The pocket algorithm (Gallant, 1990) is also applicable, but we found this tobe slower and prone to
more testing errors.
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Figure 1: Plot of the expected cost of running RVE (Isum(N, r = 10)) along with the cost of removing
inputs individually, and the estimated number of updatesM(L ,N).

Twenty problems were generated randomly withN = 100 input variables, of which 90 are ir-
relevant andr = 10 are relevant. Each of the twenty problems used a different set of ten relevant
variables (selected at random) and different data sets. Two data sets, each with 1000 instances, were
generated independently for each problem. One data set was used for training while the other was
used to validate the error of the hypotheses generated during each round of selections. The values
of the 100 input variables were all generated independently. The mean number of unique instances
with respect to the ten relevant variables was 466 .

The first step in applying the RVE algorithm is to define the cost metric and the functionM(L ,n)
for learning onn inputs. For the perceptron, we choose the number of weight updates as the metric.
The thermal perceptron anneals a temperatureT that governs the magnitude of the weight updates.
Here we usedT0 = 2 and decayed the temperature at a rate of 0.999 per training epoch untilT < 0.3
(we observed no change in the hypotheses produced by the algorithm for T < 0.3). Given the tem-
perature and decay rate, exactly 1897 training epochs are performed each time a thermal perceptron
is trained. With 1000 instances in the training data, the cost of running the learning algorithm is
fixed atM(L ,n) = 1897000(n+1). Given the above cost formula for ann-input perceptron, a table
of values forIsum(n, r) andkopt(n, r) can be constructed.

Figure 1 plots a comparison of the computed cost of the RVE algorithm, the costof removing
variables individually, and the estimated number of updatesM(L ,N) of anN-input perceptron. The
calculated cost of the RVE algorithm maintains a linear growth rate with respectto N, while the
cost of removing variables individually grows asN2. This agrees with our analysis of the RVE
and individual removal approaches. Relationships similar to that shown in Figure 1 arise for other
values ofr, although the constant factor that separatesIsum(n, r) andM(L ,n) increases withr.
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After creating the tablekopt(n, r), the selection and removal process begins. Since the seven-
of-ten learning problem is linearly separable, the tolerance for comparingthe new and current hy-
potheses was set to near zero. A small tolerance of 0.06 (equivalent to about 15 misclassifications)
is necessary since the thermal perceptron does not guarantee a minimum error hypothesis.

We also allow the current hypothesis to bias the next by not randomizing the weights (of remain-
ing variables) after each pass of RVE. Small value weights, suggesting potential irrelevant variables,
can easily transfer from one hypothesis to the next, although this is not guaranteed. Seeding the per-
ceptron weights may increase the chance of finding a linear separatorif one exists. If no separator
exists, then seeding the weights should have minimal impact. In practice we found that the effect of
seeding the weights was nullified by the pocket perceptron’s use of annealing.

5.3 Example Results

The RVE algorithm was run using the twenty problems described above. Hypotheses based on ten
variables were produced using an average of 5.45×109 weight updates, 81.1 calls to the learning
algorithm, and 359.9 seconds on a 3.12 GHz Intel Xenon processor. A version of the RVE algorithm
that removes variables individually (i.e.k was set permanently to 1) was also run, and produced
hypotheses using 12.7×109 weight updates, 138.7 calls to the learner, and 644.7 seconds. These
weight update values agree with the estimate produced by the cost function.Both versions of the
algorithm generated hypotheses that included irrelevant and excluded relevant variables for three of
the test problems. All cases in which the final selection of variables was incorrect were preceded by
an initial hypothesis (based on all 100 variables) with unusually high error (error greater than 0.18
or approximately 45 misclassified instances). Thus, poor selections occured for runs in which the
first hypothesis produced has high error due to annealing in the pocketperceptron.

Figure 2 plots the average number of inputs used for each variable set size (number of inputs)
compared to the total number of weight updates. Each marked point on the plot denotes a size of
the set of input variables given to the perceptron. The error bars indicate the standard deviation
in number of updates required to reach that point. Every third point is plottedfor the individual
removal algorithm. Compare both the rate of drop in inputs and the number of hypotheses trained
for the two RVE versions. This reflects the balance between the cost of training and unsuccessful
variable selections. Removing variables individually in the presence of manyirrelevant variables
ignores the cost of training each hypothesis, resulting in a total cost that rises quickly early in the
search process.

6. Choosingk When r Is Unknown

The assumption that the number of relevant variablesr is known has played a critical role in the
preceding discussion. In practice, this is a strong assumption that is not easily met. We would like
an algorithm that removes irrelevant attributes efficiently without such knowledge. One approach
would be simply to guess values forr and see how RVE fares. This is unsatisfying however, as a
poor guess can destroy the efficiency of RVE. In general, guessing specific values forr is difficult,
but placing a loose bound aroundr may be much easier. In some cases, the maximum value forr
may be known to be much less thanN, while in other cases,r can always be bounded by 1 andN.

Given some bound on the maximumrmax and minimumrmin values forr, a binary search for
r can be conducted during RVE’s search for relevant variables. This relies on the idea that RVE
attempts to balance the cost of learning against the cost of selecting relevant variables for removal.
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Figure 2: A comparison between the number of inputs on which the perceptrons are trained and the
mean aggregate number of updates performed by the perceptrons.

At each step of RVE, a certain number of failures,E−(n, r,k), are expected. Thus, if selecting
variables for removal is too easy (i.e. we are selecting too few variables ateach step), then the
estimate forr is too high. Similarly, if selection fails an inordinate number of times, then the
estimate forr is too low.

The choice of when to adjustr is important. The selection process must be allowed to fail a
certain number of times for each success, but allowing too many failures will decrease the efficiency
of the algorithm. We bound the number of failures byc1E−(n, r,k) wherec1 > 1 is a constant.
This allows for the failures prescribed by the cost function along with some amount of “bad luck”
in the random variable selections. The number of consecutive successes is bounded similarly by
c2(r −E−(n, r,k)) wherec2 > 0 is a constant. SinceE−(n, r,k)) is at mostr, the value of this
expression decreases as the expected number of failures increases.In practicec1 = 3 andc2 = 0.3
appear to work well.

6.1 A General Purpose Algorithm

Randomized variable elimination including a binary search forr (RVErS — “reverse”) begins by
computing tables forkopt(n, r) for values ofr betweenrmin andrmax. Next an initial hypothesis is
generated and the variable selection loop begins. The algorithm chooses the number of variables
to remove at each step based on the current value ofr. Each time the bound on the maximum
number of successful selections is exceeded,rmax reduces tor and a new value is calculated as
r = rmax+rmin

2 . Similarly, when the bound on consecutive failures is exceeded,rmin increases tor and
r is recalculated. The algorithm also checks to ensure that the current number of variables never
falls belowrmin. If this occurs,r, rmin andrmax are all set to the current number of variables. RVErS
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Given: L , c1, c2, n, rmax, rmin, tolerance

compute tablesIsum(i, r) andkopt(i, r) for rmin≤ r ≤ rmax

r ← rmax+rmin
2

success, f ail ← 0
h← hypothesis produced byL onn inputs

repeat
k← kopt(n, r)
selectk variables at random and remove them
h′← hypothesis produced byL onn−k inputs
if e(h′)−e(h)≤ tolerancethen

n← n−k
h← h′

success← success+1
fail← 0

else
replace the selectedk variables
fail← fail +1
success← 0

if r ≤ rmin then
r, rmax, rmin← n

else iffail ≥ c1E−(n, r,k) then
rmin← r
r ← rmax+rmin

2
success, fail← 0

else ifsuccess≥ c2(r−E−(n, r,k)) then
rmax← r
r ← rmax+rmin

2
success, fail← 0

until rmin < rmax and fail ≤ c1E−(n, r,k)

Table 3: Randomized variable elimination algorithm including a search forr.

terminates whenrmin andrmax converge andc1E−(n, r,k) consecutive variable selections fail. Table
3 shows the RVErS algorithm.

While RVErS can produce good performance without finding the exact value ofr, how well the
estimated value must approximate the actual value is unclear. An important factor in determining
the complexity of RVErS is how quickly the algorithm reaches a good estimate forr. In the best
case, the search forr will settle on a good approximation of the actual number of relevant variables
immediately, and the RVE complexity bound will apply. In the worst case, the search for r will
proceed slowly over values ofr that are too high, causing RVErS to behave like the individual
removal algorithm.
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Algorithm Mean Updates Mean Time (s) Mean Calls Mean Inputs
RVE (kopt) 5.5×109 359.9 81.1 10.0
rmax= 20 6.5×109 500.7 123.8 10.8
rmax= 40 8.0×109 603.8 151.3 10.2
rmax= 60 9.3×109 678.8 169.0 10.0
rmax= 80 10.0×109 694.7 172.3 10.0
rmax= 100 11.7×109 740.7 184.1 9.9
RVE (k = 1) 12.7×109 644.7 138.7 10.0

Table 4: Results of RVE and RVErS for several values ofrmax. Mean calls refers to the number
calls made to the learning algorithm. Mean inputs refers to the number of inputs used by
the final hypothesis.

With respect to the analysis presented in Section 4.2.1, note that the constantsc1 andc2 do not
impact the total cost of performing variable selection. However, a large number of adjustments to
rmin andrmax do impact the total cost negatively.

6.2 An Experimental Comparison of RVE and RVErS

The RVErS algorithm was applied to the seven-of-ten problems using the same conditionsas the
experiments with RVE. Table 4 shows the results of running RVErS based on five values ofrmaxand
rmin = 2. The results show that for increasing values ofrmax, the performance of RVErS degrades
slowly with respect to cost. The difference between RVErS with rmax= 100 and RVE withk = 1
is significant at the 95% confidence level (p = 0.049), as is the difference between RVErS with
rmax = 20 and RVE withk = kopt (p = 0.0005). However, this slow degradation does not hold in
terms of run time or number of calls to the learning algorithm. Here, only versionsof RVErS with
rmax= 20 or 40 show an improvement over RVE withk = 1.

The RVErS algorithm termination criteria causes the sharp increase in the number of callsto
the learning algorithm. Recall that asn approachesr the probability of a failed selection increases.
This means that the number of allowable selection failures grows as the algorithm nears completion.
Thus, the RVErS algorithm makes many calls to the learner using a small number of inputsn in an
attempt to determine whether the search should be terminated. The search forr compounds the
effect. If, at the end of the search, the irrelevant variables have been removed butrmin andrmax have
not converged, then the algorithm must work through several failed sequences in order to terminate.

Figure 3 plots of the number of variables selected compared to the average total number of
weight updates forrmax = 20, 60 and 100. The error bars represent the standard deviation in the
number of updates. Notice the jump in the number of updates required for the algorithm to reach
completion (represented by number of inputs equals ten) compared to the number of updates re-
quired to reach twenty remaining inputs. This pattern does not appear in the results of either version
of the RVE algorithm shown in Figure 2. Traces of the RVErS algorithm support the conclusion
that many calls to the learner are needed to reach termination even after the correct set of variables
has been found.
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Figure 3: A comparison between the number of inputs on which the thermal perceptrons are trained
and the aggregate number of updates performed using the RVErS algorithm.

The increase in run times follows directly from the increasing number of calls to the learner.
The thermal perceptron algorithm carries a great deal of overhead not reflected by the number of
updates. Since the algorithm executes for a fixed number of epochs, the run time of any call to the
learner will contribute noticeably to the run time of RVErS, regardless of the number of selected
variables. Contrast this behavior to that of learner whose cost is basedmore firmly on the number
of input variables, such as naive Bayes. Thus, even though RVErS always requires fewer weight
updates than RVE withk = 1, the latter may still run faster.

This result suggests that the termination criterion of the RVErS algorithm is flawed. The large
number of calls to the learner at the end of the variable elimination process wastes a portion of the
advantage generated earlier in the search. More importantly, the excess number of calls to the learner
does not respect the very careful search trajectory computed by the cost function. Although our cost
function for the learnerM(L ,n) does take the overhead of the thermal perceptron algorithm into
account, there is no allowance for unnecessary calls to the learner. Future research with randomized
variable elimination should therefore include a better termination criterion.

7. Experiments with RVErS

We now examine the general performance properties of randomized variable elimination via ex-
periments with several data sets. The previous experiments with perceptronson the seven-of-ten
problem focused on performance with respect to the cost metric. The following experiments are
concerned primarily with minimizing run time and the number of calls to the learner whilemain-
taining or improving accuracy. All tests were run on a 3.12 GHz Intel Xenon processor.
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Data Set Variables Classes Train Size Test Size Values ofrmax

internet-ad 1558 2 3279 CV 1558, 750, 100
mult. feature 240 10 2000 CV 240, 150, 50
DNA 180 3 2000 1186 180, 100, 50
LED 150 10 2000 CV 150, 75, 25
opt-digits 64 10 3823 1797 64, 40, 25
soybean 35 19 683 CV 35, 25, 15
sick-euthyroid 25 2 3164 CV 25, 18, 10
monks-2-local 17 2 169 432 17, 10, 5

Table 5: Summary of data sets.

Unlike the linearly-separable perceptron experiments, the problems used here do not necessarily
have solutions with zero test error. The learning algorithms may produce hypotheses with more
variance in accuracy, requiring a more sophisticated evaluation function.The utility of variable
selection with respect to even the most sophisticated learning algorithms is well known, see for
example Kohavi and John (1997) or Weston, Mukherjee, Chapelle, Pontil,Poggio, and Vapnik
(2000). The goal here is to show that our comparatively liberal elimination method sacrifices little
in terms of accuracy and gains much in terms of speed.

7.1 Learning Algorithms

The RVErS algorithm was applied to two learning algorithms. The first is the C4.5 release 8algo-
rithm (Quinlan, 1993) for decision tree induction with options to avoid pruningand early stopping.
We avoid pruning and early stopping because these are forms of variableselection, and may obscure
the performance of RVErS. The cost metric for C4.5 is based on the number of calls to the gain-
ratio data purity criterion. The cost of inducing a tree is therefore roughlyquadratic in the number
of variables: one call per variable, per decision node, with at most a linear number of nodes in the
tree. Recall that an exact metric is not needed, only the order with respect to the number of variables
must be correct.

The second learning algorithm used is naive Bayes, implemented as described by Mitchell
(1997). Here, the cost metric is based on the number of operations required to build the condi-
tional probability table, and is therefore linear in the number of inputs. In practice, these tables need
not be recomputed for each new selection of variables, as the irrelevanttable entries can simply be
ignored. However, we recompute the tables here to illustrate the general case in which the learning
algorithm must start from scratch.

7.2 Data Sets

A total of eight data sets were selected. Table 5 summarizes the data sets, anddocumentation is
generally available from the UCI repository (Blake and Merz, 1998), except for the DNA problem,
which is from StatLog (King et al., 1995). The first five problems reflect apreference for data with
an abundance of variables and a large number of instances in order to demonstrate the efficiency of
RVErS. The last three problems are included to show how RVErS performs on smaller problems,
and to allow comparison with other work in variable selection. Further tests on smaller data sets
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are possible, but not instructive, as randomized elimination is not intended for data sets with few
variables.

Three of the data sets (DNA, opt-digits, and monks) include predetermined training and test
sets. The remaining problems used ten-fold cross validation. The version of the LED problem used
here was generated using code available at the repository, and includesa corruption of 10% of the
class labels. Following Kohavi and John, the monks-2 data used here includes a local (one ofn)
encoding for each of the original six variables for a total of 17 Boolean variables. The original
monks-2 problem contains no irrelevant variables, while the encoded version contains six irrelevant
variables.

7.3 Methodology

For each data set and each of the two learning algorithms (C4.5 and naive Bayes), we ran four
versions of the RVErS algorithm. Three versions of RVErS use different values ofrmax in order to
show how the choice ofrmaxaffects performance. The fourth version is equivalent to RVE withk= 1
using a stopping criterion based on the number of consecutive failures (as in RVErS). This measures
the performance of removing variables individually given that the number of relevant variables is
completely unknown. For comparison, we also ran forward step-wise selection, backward step-wise
elimination and a hybrid filtering algorithm. The filtering algorithm simply ranked the variables by
gain-ratio, executed the learner using the first 1, 2, 3,. . ., N variables, and selected the best.

The learning algorithms used here provide no performance guarantees,and may produce highly
variable results depending on variable selections and available data. All seven selection algorithms
therefore perform five-fold cross-validation using the training data to obtain an average hypothesis
accuracy generated by the learner foreach selection of variables. The methods proposed by Kohavi
and John (1997) could be used to improve error estimates for cases in which the variance in hypoth-
esis error rates is high. Their method should provide reliable estimates for adjusting the values of
rmin andrmax regardless of learning algorithm.

Preliminary experiments indicated that the RVErS algorithm is more prone to becoming bogged
down during the selection process than deterministic algorithms. We thereforeset a small tolerance
(0.002) as shown in Table 3, which allows the algorithm to keep only very good selections of vari-
ables while still preventing the selection process from stalling unnecessarily. We have not performed
extensive tests to determine ideal tolerance values.

The final selections produced by the algorithms were evaluated in one of twoways. Domains
for which there no specific test set is provided were evaluated via ten-fold cross-validation. The
remaining domains used the provided training and test sets. In the second case, we ran each of the
four RVErS versions five times in order to smooth out any fluctuations due to the random nature of
the algorithm.

7.4 Results

Tables 6–9 summarize the results of running the RVErS algorithm on the given data sets using naive
Bayes and C4.5 for learning algorithms. In the tables,itersdenotes the number of search iterations,
evalsdenotes the number of subset evaluations performed,inputsdenotes the size of the final set of
selected variables,error rates include the standard deviation where applicable, andcostrepresents
the total cost of the search with respect to the learner’s cost metric. The first row in each block
shows the performance of the learner prior to variable selection, while the remaining rows show
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Data Set Learning Selection Iters Subset Inputs Percent Time Search
Algorithm Algorithm Evals Error (sec) Cost

internet Bayes 1558 3.0±0.9 0.5 4.61×106

rmax= 100 137 137 37.8 3.0±1.2 165 6.13×108

rmax= 750 536 536 9.2 3.2±1.2 790 3.99×109

rmax= 1558 845 845 17.5 2.9±0.8 1406 8.26×109

k = 1 1658 1658 8.8 3.0±1.2 2685 1.46×1010

forward 20 30810 18.9 2.5±0.8 22417 5.32×109

backward NA
filter 1558 1558 837 3.1±0.9 2614 1.44×1010

internet C4.5 1558 3.0±0.8 48 2.04×105

rmax= 100 340 340 33.9 3.3±1.0 5386 3.30×107

rmax= 750 1233 1233 25.7 3.7±1.2 40656 2.61×108

rmax= 1558 1489 1489 20.0 3.2±1.3 78508 5.02×108

k = 1 1761 1761 20.6 3.3±1.0 91204 6.02×108

forward 19 28647 17.5 3.2±1.2 18388 1.95×107

backward NA
filter 1558 1558 640 3.1±1.0 77608 3.98×108

mult-ftr Bayes 240 34.1±4.5 0.1 4.51×105

rmax= 50 53 53 18.8 18.3±2.0 13 3.09×107

rmax= 150 84 84 19.4 17.5±4.7 27 7.28×107

rmax= 240 112 112 19.9 17.5±2.2 41 1.13×108

k = 1 341 341 17.2 15.7±3.0 99 2.57×108

forward 20 4539 18.7 12.3±1.6 527 7.55×108

backward 186 27323 55.6 13.9±1.7 12097 3.52×1010

filter 240 240 53.6 22.5±2.7 83 2.30×108

mult-ftr C4.5 240 22.0±4.0 0.6 3.74×104

rmax= 50 306 306 22.3 22.1±2.0 241 1.13×107

rmax= 150 459 459 21.3 20.2±2.7 427 2.12×107

rmax= 240 474 474 22.0 22.1±3.5 519 2.66×107

k = 1 460 460 22.9 20.5±2.5 523 2.71×107

forward 26 5960 25.3 20.4±3.5 2004 5.06×107

backward 151 24722 90.8 20.4±3.1 51018 2.90×109

filter 240 240 140 21.2±2.7 354 1.93×107

Table 6: Variable selection results using the naive Bayes and C4.5 learningalgorithms.

the performance of the seven selection algorithms. Finally, “NA” indicates that the experiment was
terminated due to excessive computational cost.

The performance of RVErS on the five largest data sets is encouraging. In most cases RVErS
was comparable to the performance of step-wise selection with respect to generalization, while
requiring substantially less computation. This effect is most clear in the mult-ftr data set, where
forward selection with the C4.5 learner required nearly six CPU days to run(for ten-fold cross-
validation) while the slowest RVErS version required just six hours. An exception to this trend
occurs with the internet-ad data using C4.5. Here, the huge cost of running C4.5 with most of
the variables included overwhelms RVErS’s ability to eliminate variables quickly. Only the most
aggressive run of the algorithm, withrmax= 100, manages to bypass the problem.
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Data Set Learning Selection Iters Subset Inputs Percent Time Search
Algorithm Algorithm Evals Error (sec) Cost

DNA Bayes 180 6.7 0.08 3.63×105

rmax= 50 359 359 24.2 4.7±0.7 52 1.52×108

rmax= 100 495 495 30.0 4.9±0.8 75 2.39×108

rmax= 180 519 519 25.6 5.0±0.5 84 2.89×108

k = 1 469 469 23.6 4.7±0.3 76 2.56×108

forward 19 3249 18.0 5.8 269 2.99×108

backward 34 5413 148 6.5 1399 7.16×109

filter 180 180 101 5.7 32 1.33×108

DNA C4.5 180 9.7 0.5 1.95×104

rmax= 50 356 356 17.0 8.1±1.7 198 8.42×106

rmax= 100 384 384 16.2 7.1±1.5 222 9.07×106

rmax= 180 432 432 13.8 6.5±1.2 282 1.21×107

k = 1 374 374 14.4 6.5±1.1 274 1.18×107

forward 13 2262 12.0 5.9 418 2.33×106

backward 110 13735 72.0 8.7 18186 8.23×108

filter 180 180 17.0 7.6 163 7.10×106

LED Bayes 150 30.3±3.0 0.09 2.75×105

rmax= 25 127 127 22.7 26.9±3.9 19 3.97×107

rmax= 75 293 293 17.4 26.0±3.3 50 1.09×108

rmax= 150 434 434 25.6 25.9±2.6 86 2.02×108

k = 1 423 423 23.7 27.0±2.1 85 2.04×108

forward 14 2006 13.0 26.6±2.9 141 1.54×108

backward 14 1870 138.0 30.1±2.6 667 1.95×109

filter 150 150 23.7 27.1±2.1 34 8.49×107

LED C4.5 150 43.9±4.5 0.5 5.48×104

rmax= 25 85 85 51.1 42.0±3.0 89 1.01×107

rmax= 75 468 468 25.8 42.5±4.5 363 3.70×107

rmax= 150 541 541 25.2 40.8±5.7 440 4.48×107

k = 1 510 510 32.4 42.5±2.7 439 4.63×107

forward 9 1286 7.8 27.0±3.2 196 9.52×105

backward 61 7218 90.9 43.5±3.5 11481 1.33×109

filter 150 150 7.1 27.3±3.5 156 1.69×107

Table 7: Variable selection results using the naive Bayes and C4.5 learningalgorithms.

The internet-ad via C4.5 experiment highlights a second point. Notice how the forward selection
algorithm runs faster than all but one version of RVErS. In this case, the cost and time of running
C4.5 many times on a small number of variables is less than that of running C4.5 few times on
many variables. However, note that a slight change in the number of iterations needed by the
forward algorithm would change the time and cost of the search dramatically.This is not the case
for RVErS, since each iteration involves only a single evaluation instead ofO(N) evaluations.

The number of subset evaluations made by RVErS is also important. Notice the growth in num-
ber of evaluations with respect to the total (initial) number of inputs. For aggressive versions of
RVErS, growth is very slow, while more conservative versions, such ask = 1 grow approximately
linearly. This suggests that the theoretical results discussed for RVE remain valid for RVErS. Addi-
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Data Set Learning Selection Iters Subset Inputs Percent Time Search
Algorithm Algorithm Evals Error (sec) Cost

opt-digits Bayes 64 17.4 0.08 2.59×105

rmax= 25 111 111 14.2 15.7±1.5 15.9 4.05×107

rmax= 40 157 157 13.2 14.9±0.7 22.9 5.92×107

rmax= 64 162 162 14.4 14.7±1.0 24.9 6.66×107

k = 1 150 150 14.0 14.2±1.1 24.7 6.76×107

forward 17 952 16.0 14.1 93.8 1.91×108

backward 41 1781 25.0 13.5 423.0 1.39×109

filter 64 64 37.0 16.1 11.9 3.63×107

opt-digits C4.5 64 43.2 0.7 2.15×104

rmax= 25 130 130 12.0 42.4±2.0 148 3.64×106

rmax= 40 158 158 10.8 42.2±0.3 181 4.42×106

rmax= 64 216 216 10.4 42.5±1.2 253 6.36×106

k = 1 140 140 11.4 42.1±1.1 189 5.33×106

forward 16 904 15.0 41.6 645 9.64×106

backward 28 1378 38.0 44.0 2842 9.55×107

filter 64 64 50.0 43.6 87 2.12×106

soybean Bayes 35 7.8±2.4 0.02 2.40×104

rmax= 15 142 142 12.6 8.9±4.2 5.9 6.47×106

rmax= 25 135 135 11.9 10.5±5.8 5.8 6.26×106

rmax= 35 132 132 11.2 9.8±5.1 5.8 6.17×106

k = 1 88 88 12.3 9.6±5.0 4.6 4.67×106

forward 13 382 12.3 7.3±2.9 8.9 1.09×107

backward 19 472 18.0 7.9±4.6 37.5 3.63×107

filter 35 35 31.3 7.8±2.6 2.0 1.97×106

C4.5 35 8.6±4.0 0.04 1.21×103

rmax= 15 118 118 16.3 9.5±4.6 13.5 2.78×105

rmax= 25 158 158 14.7 10.1±4.1 18.6 1.90×105

rmax= 35 139 139 16.3 9.1±3.7 17.3 3.86×105

k = 1 117 117 16.1 9.3±3.5 14.9 3.52×105

forward 16 435 14.8 9.1±4.0 33.7 3.22×105

backward 18 455 19.1 10.4±4.4 69.0 1.75×106

filter 35 35 30.8 8.5±3.7 3.7 6.06×104

Table 8: Variable selection results using the naive Bayes and C4.5 learningalgorithms.

tional tests using data with many hundreds or thousands of variables would be instructive, but may
not be feasible with respect to the deterministic search algorithms.

RVErS does not achieve the same economy of subset evaluations on the three smaller problems
as on the larger problems. This is not surprising, since the ratio of relevant variables to total variables
is much smaller, requiring RVErS to proceed more cautiously. In these cases, the value ofrmax has
only a minor effect on performance, as RVErS is unable to remove more than two or three variables
in any given step.

One problem evidenced by both large and small data sets is that there appears to be no clear
choice of a best value forrmax. Conservative versions of RVErS tend to produce lower error rates,
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Data Set Learning Selection Iters Subset Inputs Percent Time Search
Algorithm Algorithm Evals Error (sec) Cost

euthyroid Bayes 25 6.2±1.3 0.02 7.54×104

rmax= 10 30 30 2.0 4.6±1.5 2.1 2.65×106

rmax= 18 39 39 2.0 4.8±1.2 1.3 3.73×106

rmax= 25 46 46 2.3 5.1±1.4 1.6 4.32×106

k = 1 35 35 1.7 5.0±1.2 1.5 4.86×106

forward 5 118 4.2 4.6±1.1 3.4 6.45×106

backward 16 263 11.3 4.2±1.3 14.4 5.91×107

filter 25 25 4.7 4.2±0.6 1.4 4.16×106

C4.5 25 2.7±1.0 0.2 1.00×103

rmax= 10 49 49 2.9 2.4±0.8 21.0 2.98×104

rmax= 18 63 63 3.3 2.2±0.7 27.6 4.58×104

rmax= 25 55 55 2.7 2.5±0.8 25.3 4.92×104

k = 1 54 54 3.8 2.3±0.9 29.4 6.39×104

forward 7 151 5.9 2.4±0.7 51.8 3.89×104

backward 16 269 11.0 2.5±0.9 200.0 6.73×105

filter 25 25 15.2 2.7±1.1 15.4 3.60×104

monks-2 Bayes 17 39.4 0.01 3.11×103

rmax= 5 25 25 2.6 36.1±3.2 0.02 1.10×105

rmax= 10 54 54 4.0 37.2±2.3 0.05 2.50×105

rmax= 17 74 74 6.0 37.4±3.1 0.08 4.93×105

k = 1 41 41 6.0 36.8±3.1 0.04 2.89×105

forward 2 33 1.0 32.9 0.02 6.70×104

backward 8 99 11.0 38.4 0.13 9.93×105

filter 17 17 2.0 40.3 0.01 1.21×105

C4.5 17 23.6 0.03 5.14×102

rmax= 5 36 36 8.2 16.7±10.9 0.8 2.34×104

rmax= 10 84 84 6.2 4.6±0.4 1.9 3.74×104

rmax= 17 79 79 6.4 6.5±4.7 1.8 4.63×104

k = 1 55 55 6.2 4.4±0.0 1.4 4.13×104

forward 2 33 1.0 32.9 0.6 3.95×102

backward 13 139 6.0 4.4 3.9 1.61×105

filter 17 17 13.0 35.6 0.4 1.51×104

Table 9: Variable selection results using the naive Bayes and C4.5 learningalgorithms.

but there are exceptions. In some cases,rmax has very little effect on error. However, in most cases,
small values ofrmax have a distinct positive effect on run time.

The results suggest two other somewhat surprising conclusions. One is that backward elimina-
tion does not appear to have the commonly assumed positive effect on generalization. Step-wise
forward selection tends to outperform step-wise backward elimination, although randomization of-
ten reduces this effect. The second conclusion is that the hybrid filter algorithm performs well in
some cases, but worse than RVErS and step-wise selection in most cases. Notice also that for prob-
lems with many variables, RVErS runs as fast or faster than the filter. Additional experiments along
these lines would be instructive.
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Figure 4: Naive Bayes overfitting plots for DNA data.
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Figure 5: C4.5 overfitting plots for DNA data.
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Overfitting is sometimes a problem with greedy variable selection algorithms. Figures 4 and
5 show both the test and inner (training) cross-validation error rates forthe selection algorithms
on naive Bayes and C4.5 respectively. Solid lines indicate test error, while dashed lines indicate
the inner cross-validation error. Notice that the test error is not alwaysminimized with the final
selections produced by RVErS. The graphs show that RVErS does tend to overfit naive Bayes, but
not C4.5 (or at least to a lesser extent). Trace data from the other data sets agree with this conclusion.

There are at least two possible explanations for overfitting by RVErS. One is that the tolerance
level either causes the algorithm to continue eliminating variables when it shouldstop, or allows
elimination of relevant variables. In either case, a better adjusted tolerancelevel should improve
performance. The monks-2 data set provides an example. In this case, ifthe tolerance is set to zero,
RVErS reliably finds variable subsets that produce low-error hypotheses withC4.5.

A second explanation is that the stopping criteria, which becomes more difficult to satisfy as
the algorithm progresses, causes the elimination process to become overzealous. In this case the
solution may be to augment the given stop criteria with a hold-out data set (in addition to the vali-
dation set). Here the algorithm monitors performance in addition to counting consecutive failures,
returning the best selection, rather than simply the last. Combining this overfittingresult with the
above performance results suggests that RVErS is capable of performing quite well with respect to
both generalization and speed.

8. Discussion

The speed of randomized variable elimination stems from two aspects of the algorithm. One is the
use of large steps in moving through the search space of variable sets. Asthe number of irrelevant
variables grows, and the probability of selecting a relevant variable at random shrinks, RVE attempts
to take larger steps toward its goal of identifying all of theirrelevantvariables. In the face of many
irrelevant variables, this is a much easier task than attempting to identify the relevant variables.

The second source of speed in RVE is the approach of removing variables immediately, instead
of finding the best variable (or set) to remove. This is much less conservative than the approach
taken by step-wise algorithms, and accounts for much of the benefit of RVE. In practice, the full
benefit of removing multiple variables simultaneously may only be beginning to materialize in the
data sets used here. However, we expect that as domains scale up, multiple selections will become
increasingly important. One example of this occurs in the STL algorithm (Utgoffand Stracuzzi,
2002), which learns many concepts over a period of time. There, the number of available input
variables grows as more concepts are learned by the system.

Consider briefly the cost of forward selection wrapper algorithms. Greedy step-wise search is
bounded byO(rNM(L , r)) for forward selection andO(N(N− r)M(L ,N)) for backward elimina-
tion, provided it does not backtrack or remove (or add) previously added (or removed) variables.
The bound on the backward approach reflects both the larger number ofsteps required to remove
the irrelevant variables and the larger number of variables used at eachcall to the learner. The cost
of training each hypothesis is small in the forward greedy approach compared to RVE, since the
number of inputs to any given hypothesis is much smaller (bounded roughly by r). However, the
number of calls to the learning algorithm is polynomial inN. As the number of irrelevant variables
increases, even a forward greedy approach to variable selection becomes quickly unmanageable.

The cost of a best-first search using compound operators (Kohavi and John, 1997) is somewhat
harder to analyze. Their approach combines the two best operators (e.g. add variable or remove
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variable) and then checks whether the result is an improvement. If so, the resulting operator is
combined with the next best operator and tested, continuing until there is no improvement. The-
oretically this type of search could find a solution using approximately 2r forward evaluations or
2(N− r) backward subset evaluations. However, this would require the algorithmto make the cor-
rect choice at every step. The experimental results (Kohavi and John, 1997) suggest that in practice
the algorithm requires many more subset evaluations than this minimum.

Compare the above bounds on forward and backward greedy searchto that of RVE given a fixed
k = 1, which isO(rNM(L ,N)). Notice that the number of calls to the learning algorithm is the
same for RVE with fixedk and a greedyforward search (the cost of learning is different however).
The empirical results support the conclusion that the two algorithms produce similar cost, but also
show that RVE withk = 1 requires less CPU time. The source of this additional economy is unclear,
although it may be related to various overhead costs associated with the learning algorithms. RVE
requires many fewer total learner executions, thereby reducing overhead.

In practice, thek = 1 version of RVErS often makes fewer thanrN calls to the learning algo-
rithm. This follows from the very high probability of a successful selection of an irrelevant variable
at each step. In cases whenN is much larger thanr, the algorithm withk = 1 makes roughlyN calls
to the learner as shown in Tables 6 and 7. Additional economy may also be possible whenk is fixed
at one. Each variable should only need to be tested once, allowing RVErS to make exactlyN calls
to the learner. Further experiments are needed to confirm this intuition.

Although the RVE algorithm using a fixedk= 1 is significantly more expensive than the optimal
RVE or RVErS using a good guess forrmax, experiments and analysis show that this simple algo-
rithm is generally faster than the deterministic forward or backward approaches, provided that there
are enough irrelevant variables in the domain. As the ratior/N decreases, and the probability of
selecting an irrelevant variable at random increases, the benefit of a randomized approach improves.
Thus, even when no information about the number of relevant variables isavailable, a randomized,
backward approach to variable selection may be beneficial.

A disadvantage to randomized variable selection is that there is no clear way torecover from
poor choices. Step-wise selection algorithms sometimes consider both adding and removing vari-
ables at each step, so that no variable is ever permanently selected or eliminated. A hybrid version of
RVErS which considers adding a single variable each time a set a variables is eliminated is possible,
but this would ultimately negate much of the algorithm’s computational benefit.

Step-wise selection algorithms are sometimes parallelized in order to speed the selection pro-
cess. This is due in large part to the very high cost of step-wise selection.RVE mitigates this
problem to a point, but there is no obvious way to parallelize a randomized selection algorithm.
Parallelization could be used to improve generalization performance by allowing the algorithm to
evaluate several subsets simultaneously and then choose the best.

9. Future Work

There are at least three possible directions for future work with RVE. The first is an improved
method for choosingk when r is unknown. We have presented an algorithm based on a binary
search, but RVErS still wastes a great deal of time deciding when to terminate the search, and
can quickly degenerate into a one-at-a-time removal strategy if bad decisions are made early in
the search. Notice however, that this worst-case performance is still better than stepwise backward
elimination, and comparable to stepwise forward selection, both popular algorithms.
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A second direction for future work involves further study of the effectof testing very few of the
possible successors to the current search node. Testing all possible successors is the source of the
high cost of most wrapper methods. If a sparse search, such as that used by RVE, does not sacrifice
much quality in general, then other fast wrapper algorithms may be possible.

A third possible direction involves biasing the random selections at each step. If a set ofk
variables fails to maintain evaluation performance, then at least one of thek must have been relevant
to the learning problem. Thus, variables included in a failed selection may be viewed as more likely
to be relevant. This “relevance likelihood” can be tracked throughout theelimination process and
used to bias selections at each step.

10. Conclusion

The randomized variable elimination algorithm uses a two-step process to remove irrelevant input
variables. First, a sequence of values fork, the number input variables to remove at each step, is
computed such that the cost of removing allN− r irrelevant variables is minimized. The algorithm
then removes the irrelevant variables by randomly selecting inputs for removal according to the
computed schedule. Each step is verified by generating and testing a hypothesis to ensure that the
new hypothesis is at least as good as the existing hypothesis. A randomizedapproach to variable
elimination that simultaneously removes multiple inputs produces a factorN speed-up over ap-
proaches that remove inputs individually, provided that the numberr of relevant variables is known
in advance.

When number of relevant variables is not known, a search forr may be conducted in parallel
with the search for irrelevant variables. Although this approach wastes some of the benefits gener-
ated by the theoretical algorithm, a reasonable upper bound on the number of relevant variables still
produces good performance. When even this weaker condition cannotbe satisfied, a randomized
approach may still outperform the conventional deterministic wrapper approaches provided that the
number of relevant variables is small compared to the total number of variables. A randomized ap-
proach to variable selection is therefore applicable whenever the target domain is believed to have
many irrelevant variables.

Finally, we conclude that an explicit search through the space of variablesubsets is not necessary
to achieve good performance from a wrapper algorithm. Randomized variable elimination provides
competitive performance without incurring the high cost of expanding andevaluating all successors
of a search node. As a result, randomized variable elimination scales well beyond current wrapper
algorithms for variable selection.
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